mirror of
https://github.com/bertptrs/adventofcode.git
synced 2025-12-25 12:50:32 +01:00
Add benchmarking plots
This commit is contained in:
97
2021/create_timing_plots.py
Executable file
97
2021/create_timing_plots.py
Executable file
@@ -0,0 +1,97 @@
|
||||
#!/usr/bin/env python3
|
||||
import json
|
||||
from pathlib import Path
|
||||
from typing import Dict
|
||||
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
|
||||
def read_timings() -> Dict[int, Dict]:
|
||||
timings = {}
|
||||
|
||||
for day in Path('target/criterion/part1').iterdir():
|
||||
with open(day / 'new' / 'estimates.json', mode='rb') as f:
|
||||
timings[int(day.parts[-1])] = {
|
||||
1: json.load(f)
|
||||
}
|
||||
|
||||
for day in Path('target/criterion/part2').iterdir():
|
||||
with open(day / 'new' / 'estimates.json', mode='rb') as f:
|
||||
timings[int(day.parts[-1])][2] = json.load(f)
|
||||
|
||||
return timings
|
||||
|
||||
|
||||
def plot_cumulative_time(timings: Dict[int, Dict]):
|
||||
plt.clf()
|
||||
|
||||
times = [0]
|
||||
|
||||
for day in range(min(timings.keys()), max(timings.keys()) + 1):
|
||||
times.append(timings[day][1]['mean']['point_estimate'])
|
||||
if day < 25:
|
||||
times.append(timings[day][2]['mean']['point_estimate'])
|
||||
else:
|
||||
times.append(0)
|
||||
|
||||
cumulative = np.cumsum(times)
|
||||
# Convert from nanoseconds to seconds
|
||||
cumulative /= 1e9
|
||||
|
||||
x = np.arange(0.0, 25.5, 0.5)
|
||||
|
||||
plt.plot(x, cumulative, label="Cumulative time", drawstyle='steps-post')
|
||||
plt.plot([0, 25], [0, 0.5], label="Target time")
|
||||
plt.ylabel('Cumulative time (s)')
|
||||
plt.xlabel('Days completed')
|
||||
|
||||
plt.legend()
|
||||
plt.tight_layout()
|
||||
|
||||
plt.xlim(0, 25)
|
||||
plt.ylim(0, 0.5)
|
||||
|
||||
plt.savefig('cumulative-time.svg')
|
||||
|
||||
|
||||
def plot_individual_times(timings: Dict[int, Dict]):
|
||||
plt.clf()
|
||||
|
||||
def plot(parts, **kwargs):
|
||||
x = np.arange(1, len(parts) + 1)
|
||||
|
||||
values = np.array(list(part['mean']['point_estimate'] for part in parts))
|
||||
upper = np.array(list(part['mean']['confidence_interval']['upper_bound'] for part in parts))
|
||||
lower = np.array(list(part['mean']['confidence_interval']['lower_bound'] for part in parts))
|
||||
|
||||
# Convert from ns to s
|
||||
yerr = np.array([upper - values, lower - values]) / 1e9
|
||||
values = values / 1e9
|
||||
|
||||
plt.bar(x, values, yerr=yerr, align='edge', log=True, **kwargs)
|
||||
pass
|
||||
|
||||
plot(list(timings[day][1] for day in range(1, 26)), label="Part 1", width=-0.4)
|
||||
plot(list(timings[day][2] for day in range(1, 25)), label="Part 2", width=0.4)
|
||||
|
||||
plt.ylabel('Runtime (s)')
|
||||
plt.xlabel('Day')
|
||||
|
||||
plt.xlim(0, 26)
|
||||
plt.xticks(np.arange(1, 26))
|
||||
|
||||
plt.legend()
|
||||
plt.tight_layout()
|
||||
|
||||
plt.savefig('individual-time.svg')
|
||||
|
||||
|
||||
def main():
|
||||
timings = read_timings()
|
||||
plot_cumulative_time(timings)
|
||||
plot_individual_times(timings)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
||||
Reference in New Issue
Block a user