mirror of
https://github.com/bertptrs/adventofcode.git
synced 2025-12-25 21:00:31 +01:00
Implement day 24
This commit is contained in:
@@ -90,7 +90,14 @@ where
|
||||
let mut buffer = Vec::new();
|
||||
input.read_to_end(&mut buffer).unwrap();
|
||||
|
||||
let (_, output) = parser(&buffer).finish().unwrap();
|
||||
|
||||
output
|
||||
match parser(&buffer).finish() {
|
||||
Ok((_, output)) => output,
|
||||
Err(err) => {
|
||||
panic!(
|
||||
"Failed to parse input with error {:?} at \"{}\"",
|
||||
err.code,
|
||||
String::from_utf8_lossy(err.input)
|
||||
);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@@ -1,9 +1,159 @@
|
||||
//! Very input-specific reverse-engineered solution
|
||||
//!
|
||||
//! # General implementation
|
||||
//!
|
||||
//! The code in the examples is a series of 14 times this:
|
||||
//!
|
||||
//! ```txt
|
||||
//! inp w -> read digit
|
||||
//! mul x 0
|
||||
//! add x z
|
||||
//! mod x 26 -> x = z % 26
|
||||
//! div z $A -> pop Z (see below)
|
||||
//! add x $B
|
||||
//! eql x w -> x = ((z + $B) == w)
|
||||
//! eql x 0 -> x = ((z + $B) != w)
|
||||
//! mul y 0
|
||||
//! add y 25
|
||||
//! mul y x
|
||||
//! add y 1 -> if x { 26 } else { 1 }
|
||||
//! mul z y -> if x { z *= 26 } (push z, see below)
|
||||
//! mul y 0
|
||||
//! add y w
|
||||
//! add y $C -> y = w + $C
|
||||
//! mul y x
|
||||
//! add z y -> if x { z += w + $C }
|
||||
//! ```
|
||||
//!
|
||||
//! `$A` is either `1` or `26` which we can translate to a bool `$A == 26` for convenience. This
|
||||
//! simplifies to the following rust.
|
||||
//!
|
||||
//! ```
|
||||
//! fn validate<const A: bool, const B: i32, const C: i32>(mut z: i32, digit: i32) -> i32 {
|
||||
//! let x = (z % 26 + B) != digit;
|
||||
//! if A {
|
||||
//! z /= 26;
|
||||
//! }
|
||||
//!
|
||||
//! if x {
|
||||
//! z = 26 * z + digit + C;
|
||||
//! }
|
||||
//!
|
||||
//! z
|
||||
//! }
|
||||
//! ```
|
||||
//!
|
||||
//! In human terms, `z` is used to hold a base 26 number. When `$A` is `true`, we pop off the least
|
||||
//! significant digit by dividing by 26. Then, depending on whether `(z + $B) % 26` is equal to our
|
||||
//! digit, we push `digit + $C`. Ideally, we should pop as often as we push in order to arrive at `z
|
||||
//! == 0` in the end. The input contains 7 pops, so we want each of those to not push.
|
||||
//!
|
||||
//! To solve this problem, we use a backtracking memoizing algorithm, where we cancel every sequence
|
||||
//! that fails to pop at some point. A pop is failed whenever we execute a validation pop where we
|
||||
//! can pop if `x` happened to be set to `0` at the time of the check. We can memoize this over the
|
||||
//! running value of `z`.
|
||||
//!
|
||||
//! This implementation probably doesn't work on other people's input; to fix it, you'll want to
|
||||
//! update the `parse_step` function. Good luck with that.
|
||||
use std::collections::HashMap;
|
||||
use std::io::Read;
|
||||
|
||||
pub fn part1(_input: &mut dyn Read) -> String {
|
||||
todo!()
|
||||
use nom::branch::alt;
|
||||
use nom::bytes::complete::tag;
|
||||
use nom::character::complete::newline;
|
||||
use nom::combinator::map;
|
||||
use nom::multi::separated_list1;
|
||||
use nom::sequence::delimited;
|
||||
use nom::sequence::preceded;
|
||||
use nom::sequence::tuple;
|
||||
use nom::IResult;
|
||||
|
||||
use crate::common::read_input;
|
||||
|
||||
type Cache = HashMap<(usize, i32), Option<i64>>;
|
||||
|
||||
#[derive(Debug)]
|
||||
struct Step(bool, i32, i32);
|
||||
|
||||
impl Step {
|
||||
fn evaluate(&self, digit: i32, z: i32) -> Option<i32> {
|
||||
if self.0 {
|
||||
(z % 26 + self.1 == digit).then(|| z / 26)
|
||||
} else {
|
||||
Some(z * 26 + digit + self.2)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
pub fn part2(_input: &mut dyn Read) -> String {
|
||||
todo!()
|
||||
fn parse_step(input: &[u8]) -> IResult<&[u8], Step> {
|
||||
use nom::character::complete::i32;
|
||||
|
||||
let parse_pop = preceded(
|
||||
tag("inp w\nmul x 0\nadd x z\nmod x 26\ndiv z "),
|
||||
alt((map(tag("1"), |_| false), map(tag("26"), |_| true))),
|
||||
);
|
||||
|
||||
let parse_a = preceded(tag("\nadd x "), i32);
|
||||
|
||||
let parse_b = delimited(
|
||||
tag("\neql x w\neql x 0\nmul y 0\nadd y 25\nmul y x\nadd y 1\nmul z y\nmul y 0\nadd y w\nadd y "),
|
||||
i32,
|
||||
tag("\nmul y x\nadd z y"),
|
||||
);
|
||||
|
||||
map(tuple((parse_pop, parse_a, parse_b)), |(pop, a, b)| {
|
||||
Step(pop, a, b)
|
||||
})(input)
|
||||
}
|
||||
|
||||
fn parse_input(input: &[u8]) -> IResult<&[u8], Vec<Step>> {
|
||||
separated_list1(newline, parse_step)(input)
|
||||
}
|
||||
|
||||
fn optimize(
|
||||
current: usize,
|
||||
steps: &[Step],
|
||||
digits: &[i32],
|
||||
z: i32,
|
||||
cache: &mut Cache,
|
||||
) -> Option<i64> {
|
||||
if current >= steps.len() {
|
||||
return (z == 0).then(|| 0);
|
||||
}
|
||||
|
||||
if let Some(&memoized) = cache.get(&(current, z)) {
|
||||
return memoized;
|
||||
}
|
||||
|
||||
let result = digits.iter().find_map(|&digit| {
|
||||
let z = steps[current].evaluate(digit, z)?;
|
||||
let result = optimize(current + 1, steps, digits, z, cache)?;
|
||||
|
||||
Some(result + digit as i64 * 10i64.pow(13 - current as u32))
|
||||
});
|
||||
cache.insert((current, z), result);
|
||||
|
||||
result
|
||||
}
|
||||
|
||||
fn parts_common(input: &mut dyn Read, digits: &[i32]) -> String {
|
||||
let steps = read_input(input, parse_input);
|
||||
|
||||
let mut cache = Cache::new();
|
||||
|
||||
optimize(0, &steps, digits, 0, &mut cache)
|
||||
.unwrap()
|
||||
.to_string()
|
||||
}
|
||||
|
||||
pub fn part1(input: &mut dyn Read) -> String {
|
||||
let digits = [9, 8, 7, 6, 5, 4, 3, 2, 1];
|
||||
|
||||
parts_common(input, &digits)
|
||||
}
|
||||
|
||||
pub fn part2(input: &mut dyn Read) -> String {
|
||||
let digits = [1, 2, 3, 4, 5, 6, 7, 8, 9];
|
||||
|
||||
parts_common(input, &digits)
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user