mirror of
https://github.com/bertptrs/adventofcode.git
synced 2025-12-25 21:00:31 +01:00
Move 2015 out of the way.
This commit is contained in:
26
2015/day-17/README.md
Normal file
26
2015/day-17/README.md
Normal file
@@ -0,0 +1,26 @@
|
||||
# Day 17 efficient solution
|
||||
|
||||
Day 17 is an instance of the subset sum problem. This problem asks whether for
|
||||
a (multi)set of integers *V*, there is a non-empty subset of integers summing up to
|
||||
exactly *s*. This problem is NP-complete.
|
||||
|
||||
The brute force approach of this is trying every possible set in the powerset
|
||||
of *V* to see if they match. This is inpractical however, because a powerset of
|
||||
a set of size *n* contains 2<sup>2</sup> sets.
|
||||
|
||||
In the exercise, we have 20 buckets, and 2<sup>20</sup> is still
|
||||
brute-forcable. There is a smarter approach.
|
||||
|
||||
We split the list of buckets in two lists of (approximately) the same size. We
|
||||
then take the powersets of those two lists and compute the sum for each entry.
|
||||
This leaves us with a total of 2<sup>n / 2 + 1</sup> entries. We then sort both
|
||||
sublists on the total value of each entry.
|
||||
|
||||
Finally, we iterate of the first list, and use binary search to see whether
|
||||
there is an appropriately sized entry in the second list. This gives us a final
|
||||
complexity of *n* times 2<sup>*n*/2</sup>, allowing the solution to be computed
|
||||
instantly.
|
||||
|
||||
The algorithm above can be modified to find all combinations, not just one, in
|
||||
time proportional to the number of solutions. This is implemented in the final
|
||||
program.
|
||||
20
2015/day-17/input.txt
Normal file
20
2015/day-17/input.txt
Normal file
@@ -0,0 +1,20 @@
|
||||
33
|
||||
14
|
||||
18
|
||||
20
|
||||
45
|
||||
35
|
||||
16
|
||||
35
|
||||
1
|
||||
13
|
||||
18
|
||||
13
|
||||
50
|
||||
44
|
||||
48
|
||||
6
|
||||
24
|
||||
41
|
||||
30
|
||||
42
|
||||
62
2015/day-17/solution.py
Normal file
62
2015/day-17/solution.py
Normal file
@@ -0,0 +1,62 @@
|
||||
from __future__ import print_function, division
|
||||
import fileinput
|
||||
from collections import defaultdict
|
||||
import bisect
|
||||
|
||||
def value(buckets, choice):
|
||||
total = 0
|
||||
for value in buckets:
|
||||
if choice % 2 == 1:
|
||||
total += value
|
||||
|
||||
choice //= 2
|
||||
|
||||
return total
|
||||
|
||||
def ones(x):
|
||||
n = 0
|
||||
while x > 0:
|
||||
if x % 2:
|
||||
n += 1
|
||||
|
||||
x //= 2
|
||||
|
||||
return n
|
||||
|
||||
def partition(a_list):
|
||||
pivot = len(a_list) // 2
|
||||
|
||||
return a_list[:pivot], a_list[pivot:]
|
||||
|
||||
def partitionList(buckets):
|
||||
result = [(value(buckets, x), ones(x)) for x in range(1 << len(buckets))]
|
||||
result.sort()
|
||||
return result
|
||||
|
||||
buckets = []
|
||||
|
||||
for line in fileinput.input():
|
||||
buckets.append(int(line))
|
||||
|
||||
partition1, partition2 = partition(buckets)
|
||||
|
||||
values1 = partitionList(partition1)
|
||||
values2 = partitionList(partition2)
|
||||
|
||||
possible = defaultdict(lambda: 0)
|
||||
|
||||
i = 0
|
||||
|
||||
target = 150
|
||||
|
||||
for entry in values1:
|
||||
|
||||
i = bisect.bisect_left(values2, (target - entry[0], 0))
|
||||
|
||||
while i < len(values2) and entry[0] + values2[i][0] == target:
|
||||
possible[entry[1] + values2[i][1]] += 1
|
||||
i += 1
|
||||
|
||||
print("Total possibilities:", sum(possible.values()))
|
||||
print("Minimal possibilities:", possible[min(possible.keys())])
|
||||
|
||||
Reference in New Issue
Block a user