Clean up day 16 and 19.

Day 16 and 19 share the same CPU and now they actually share the same
code for it.
This commit is contained in:
2018-12-19 07:53:09 +01:00
parent cb99849143
commit c554811fda
4 changed files with 197 additions and 251 deletions

167
2018/src/cpu.rs Normal file
View File

@@ -0,0 +1,167 @@
//! Shared CPU module
//!
//! Day 16 and day 19 use the same CPU, so that code is shared (and documented) here.
/// Representation an OpCode for the AoC 2018 CPU.
#[derive(Copy, Clone, Debug, Hash, Eq, PartialEq)]
pub enum OpCode {
ADDR,
ADDI,
MULR,
MULI,
BANR,
BANI,
BORR,
BORI,
SETR,
SETI,
GTIR,
GTRI,
GTRR,
EQIR,
EQRI,
EQRR,
}
impl OpCode {
/// Check if the given before/after state is valid for a particular OpCode.
///
/// For this, a possible op is represented as an array of integers, where the first
/// integer (the possible op-code) is ignored.
///
/// # Examples
///
/// ```
/// use aoc_2018::cpu::OpCode;
///
/// assert_eq!(true, OpCode::ADDI.is_valid(&[0, 0, 3, 0], &[0; 6], &[3, 0, 0, 0, 0, 0]))
/// ```
pub fn is_valid(self, op: &[i32; 4], before: &[i32; 6], after: &[i32; 6]) -> bool {
let mut cpu = CPU::new();
cpu.registers.copy_from_slice(before);
if let Ok(val) = cpu.execute(self, &op[1..4]) {
if val == after[op[3] as usize] {
return true;
}
}
false
}
/// Iterator over all possible OpCode values.
///
/// This iterator is backed internally by a static array of all op codes.
pub fn values() -> impl Iterator<Item=Self> {
OP_LIST.iter().cloned()
}
}
impl From<&str> for OpCode {
fn from(name: &str) -> Self {
match name {
"addr" => OpCode::ADDR,
"addi" => OpCode::ADDI,
"mulr" => OpCode::MULR,
"muli" => OpCode::MULI,
"banr" => OpCode::BANR,
"bani" => OpCode::BANI,
"borr" => OpCode::BORR,
"bori" => OpCode::BORI,
"setr" => OpCode::SETR,
"seti" => OpCode::SETI,
"gtir" => OpCode::GTIR,
"gtri" => OpCode::GTRI,
"gtrr" => OpCode::GTRR,
"eqir" => OpCode::EQIR,
"eqri" => OpCode::EQRI,
"eqrr" => OpCode::EQRR,
_ => panic!("Invalid opcode {}", name),
}
}
}
const OP_LIST: [OpCode; 16] = [
OpCode::ADDR,
OpCode::ADDI,
OpCode::MULR,
OpCode::MULI,
OpCode::BANR,
OpCode::BANI,
OpCode::BORR,
OpCode::BORI,
OpCode::SETR,
OpCode::SETI,
OpCode::GTIR,
OpCode::GTRI,
OpCode::GTRR,
OpCode::EQIR,
OpCode::EQRI,
OpCode::EQRR,
];
/// CPU Error
///
/// This can be returned as an error when the CPU cannot execute
/// an instruction.
#[derive(Debug)]
pub enum CPUErr {
/// An invalid register was requested, with this register number.
InvalidRegister(i32),
}
#[derive(Default)]
pub struct CPU {
/// Internal register state. Can be modified freely.
pub registers: [i32; 6],
}
impl CPU {
/// Construct a new CPU instance.
pub fn new() -> Self {
Default::default()
}
/// Execute an OpCode on the CPU
///
/// This method will return the result of the operation executed, or a
/// CPUErr when execution fails.
///
/// # Panics
///
/// This function does not check bounds on the operands slice (var) and the output register.
/// Thus, when the operands slice has less than 3 elements or the target register does not
/// exist, this function will panic.
pub fn execute(&mut self, op: OpCode, var: &[i32]) -> Result<i32, CPUErr> {
use self::OpCode::*;
let res = match op {
ADDR => self.reg(var[0])? + self.reg(var[1])?,
ADDI => self.reg(var[0])? + var[1],
MULR => self.reg(var[0])? * self.reg(var[1])?,
MULI => self.reg(var[0])? * var[1],
BANR => self.reg(var[0])? & self.reg(var[1])?,
BANI => self.reg(var[0])? & var[1],
BORR => self.reg(var[0])? | self.reg(var[1])?,
BORI => self.reg(var[0])? | var[1],
SETR => self.reg(var[0])?,
SETI => var[0],
GTRR => (self.reg(var[0])? > self.reg(var[1])?).into(),
GTIR => (var[0] > self.reg(var[1])?).into(),
GTRI => (self.reg(var[0])? > var[1]).into(),
EQRR => (self.reg(var[0])? == self.reg(var[1])?).into(),
EQIR => (var[0] == self.reg(var[1])?).into(),
EQRI => (self.reg(var[0])? == var[1]).into(),
};
self.registers[var[2] as usize] = res;
Ok(res)
}
fn reg(&self, index: i32) -> Result<i32, CPUErr> {
if let Some(val) = self.registers.get(index as usize) {
Ok(*val)
} else {
Err(CPUErr::InvalidRegister(index))
}
}
}