mirror of
https://github.com/bertptrs/adventofcode.git
synced 2025-12-27 13:50:32 +01:00
Compare commits
2 Commits
f48a02c81c
...
c66fb86ef9
| Author | SHA1 | Date | |
|---|---|---|---|
| c66fb86ef9 | |||
| 64757031fb |
147
2022/inputs/14.txt
Normal file
147
2022/inputs/14.txt
Normal file
@@ -0,0 +1,147 @@
|
|||||||
|
492,65 -> 492,64 -> 492,65 -> 494,65 -> 494,59 -> 494,65 -> 496,65 -> 496,64 -> 496,65 -> 498,65 -> 498,62 -> 498,65 -> 500,65 -> 500,63 -> 500,65 -> 502,65 -> 502,59 -> 502,65 -> 504,65 -> 504,64 -> 504,65 -> 506,65 -> 506,63 -> 506,65 -> 508,65 -> 508,63 -> 508,65
|
||||||
|
541,149 -> 541,141 -> 541,149 -> 543,149 -> 543,144 -> 543,149 -> 545,149 -> 545,144 -> 545,149 -> 547,149 -> 547,148 -> 547,149 -> 549,149 -> 549,144 -> 549,149 -> 551,149 -> 551,141 -> 551,149 -> 553,149 -> 553,147 -> 553,149 -> 555,149 -> 555,146 -> 555,149 -> 557,149 -> 557,147 -> 557,149
|
||||||
|
527,102 -> 527,106 -> 523,106 -> 523,111 -> 540,111 -> 540,106 -> 533,106 -> 533,102
|
||||||
|
484,48 -> 484,43 -> 484,48 -> 486,48 -> 486,38 -> 486,48 -> 488,48 -> 488,43 -> 488,48 -> 490,48 -> 490,45 -> 490,48 -> 492,48 -> 492,40 -> 492,48
|
||||||
|
541,165 -> 541,166 -> 551,166 -> 551,165
|
||||||
|
506,68 -> 506,70 -> 502,70 -> 502,77 -> 513,77 -> 513,70 -> 512,70 -> 512,68
|
||||||
|
541,165 -> 541,166 -> 551,166 -> 551,165
|
||||||
|
565,161 -> 569,161
|
||||||
|
483,51 -> 483,52 -> 500,52 -> 500,51
|
||||||
|
492,65 -> 492,64 -> 492,65 -> 494,65 -> 494,59 -> 494,65 -> 496,65 -> 496,64 -> 496,65 -> 498,65 -> 498,62 -> 498,65 -> 500,65 -> 500,63 -> 500,65 -> 502,65 -> 502,59 -> 502,65 -> 504,65 -> 504,64 -> 504,65 -> 506,65 -> 506,63 -> 506,65 -> 508,65 -> 508,63 -> 508,65
|
||||||
|
490,35 -> 490,31 -> 490,35 -> 492,35 -> 492,31 -> 492,35 -> 494,35 -> 494,29 -> 494,35 -> 496,35 -> 496,26 -> 496,35
|
||||||
|
538,114 -> 538,116 -> 536,116 -> 536,122 -> 552,122 -> 552,116 -> 544,116 -> 544,114
|
||||||
|
541,149 -> 541,141 -> 541,149 -> 543,149 -> 543,144 -> 543,149 -> 545,149 -> 545,144 -> 545,149 -> 547,149 -> 547,148 -> 547,149 -> 549,149 -> 549,144 -> 549,149 -> 551,149 -> 551,141 -> 551,149 -> 553,149 -> 553,147 -> 553,149 -> 555,149 -> 555,146 -> 555,149 -> 557,149 -> 557,147 -> 557,149
|
||||||
|
499,13 -> 499,15 -> 495,15 -> 495,22 -> 506,22 -> 506,15 -> 501,15 -> 501,13
|
||||||
|
506,84 -> 510,84
|
||||||
|
499,13 -> 499,15 -> 495,15 -> 495,22 -> 506,22 -> 506,15 -> 501,15 -> 501,13
|
||||||
|
512,80 -> 516,80
|
||||||
|
499,13 -> 499,15 -> 495,15 -> 495,22 -> 506,22 -> 506,15 -> 501,15 -> 501,13
|
||||||
|
512,84 -> 516,84
|
||||||
|
492,65 -> 492,64 -> 492,65 -> 494,65 -> 494,59 -> 494,65 -> 496,65 -> 496,64 -> 496,65 -> 498,65 -> 498,62 -> 498,65 -> 500,65 -> 500,63 -> 500,65 -> 502,65 -> 502,59 -> 502,65 -> 504,65 -> 504,64 -> 504,65 -> 506,65 -> 506,63 -> 506,65 -> 508,65 -> 508,63 -> 508,65
|
||||||
|
490,35 -> 490,31 -> 490,35 -> 492,35 -> 492,31 -> 492,35 -> 494,35 -> 494,29 -> 494,35 -> 496,35 -> 496,26 -> 496,35
|
||||||
|
538,114 -> 538,116 -> 536,116 -> 536,122 -> 552,122 -> 552,116 -> 544,116 -> 544,114
|
||||||
|
492,65 -> 492,64 -> 492,65 -> 494,65 -> 494,59 -> 494,65 -> 496,65 -> 496,64 -> 496,65 -> 498,65 -> 498,62 -> 498,65 -> 500,65 -> 500,63 -> 500,65 -> 502,65 -> 502,59 -> 502,65 -> 504,65 -> 504,64 -> 504,65 -> 506,65 -> 506,63 -> 506,65 -> 508,65 -> 508,63 -> 508,65
|
||||||
|
492,65 -> 492,64 -> 492,65 -> 494,65 -> 494,59 -> 494,65 -> 496,65 -> 496,64 -> 496,65 -> 498,65 -> 498,62 -> 498,65 -> 500,65 -> 500,63 -> 500,65 -> 502,65 -> 502,59 -> 502,65 -> 504,65 -> 504,64 -> 504,65 -> 506,65 -> 506,63 -> 506,65 -> 508,65 -> 508,63 -> 508,65
|
||||||
|
541,149 -> 541,141 -> 541,149 -> 543,149 -> 543,144 -> 543,149 -> 545,149 -> 545,144 -> 545,149 -> 547,149 -> 547,148 -> 547,149 -> 549,149 -> 549,144 -> 549,149 -> 551,149 -> 551,141 -> 551,149 -> 553,149 -> 553,147 -> 553,149 -> 555,149 -> 555,146 -> 555,149 -> 557,149 -> 557,147 -> 557,149
|
||||||
|
492,65 -> 492,64 -> 492,65 -> 494,65 -> 494,59 -> 494,65 -> 496,65 -> 496,64 -> 496,65 -> 498,65 -> 498,62 -> 498,65 -> 500,65 -> 500,63 -> 500,65 -> 502,65 -> 502,59 -> 502,65 -> 504,65 -> 504,64 -> 504,65 -> 506,65 -> 506,63 -> 506,65 -> 508,65 -> 508,63 -> 508,65
|
||||||
|
484,48 -> 484,43 -> 484,48 -> 486,48 -> 486,38 -> 486,48 -> 488,48 -> 488,43 -> 488,48 -> 490,48 -> 490,45 -> 490,48 -> 492,48 -> 492,40 -> 492,48
|
||||||
|
484,48 -> 484,43 -> 484,48 -> 486,48 -> 486,38 -> 486,48 -> 488,48 -> 488,43 -> 488,48 -> 490,48 -> 490,45 -> 490,48 -> 492,48 -> 492,40 -> 492,48
|
||||||
|
506,68 -> 506,70 -> 502,70 -> 502,77 -> 513,77 -> 513,70 -> 512,70 -> 512,68
|
||||||
|
509,82 -> 513,82
|
||||||
|
484,48 -> 484,43 -> 484,48 -> 486,48 -> 486,38 -> 486,48 -> 488,48 -> 488,43 -> 488,48 -> 490,48 -> 490,45 -> 490,48 -> 492,48 -> 492,40 -> 492,48
|
||||||
|
538,114 -> 538,116 -> 536,116 -> 536,122 -> 552,122 -> 552,116 -> 544,116 -> 544,114
|
||||||
|
541,149 -> 541,141 -> 541,149 -> 543,149 -> 543,144 -> 543,149 -> 545,149 -> 545,144 -> 545,149 -> 547,149 -> 547,148 -> 547,149 -> 549,149 -> 549,144 -> 549,149 -> 551,149 -> 551,141 -> 551,149 -> 553,149 -> 553,147 -> 553,149 -> 555,149 -> 555,146 -> 555,149 -> 557,149 -> 557,147 -> 557,149
|
||||||
|
553,161 -> 557,161
|
||||||
|
484,48 -> 484,43 -> 484,48 -> 486,48 -> 486,38 -> 486,48 -> 488,48 -> 488,43 -> 488,48 -> 490,48 -> 490,45 -> 490,48 -> 492,48 -> 492,40 -> 492,48
|
||||||
|
492,65 -> 492,64 -> 492,65 -> 494,65 -> 494,59 -> 494,65 -> 496,65 -> 496,64 -> 496,65 -> 498,65 -> 498,62 -> 498,65 -> 500,65 -> 500,63 -> 500,65 -> 502,65 -> 502,59 -> 502,65 -> 504,65 -> 504,64 -> 504,65 -> 506,65 -> 506,63 -> 506,65 -> 508,65 -> 508,63 -> 508,65
|
||||||
|
484,48 -> 484,43 -> 484,48 -> 486,48 -> 486,38 -> 486,48 -> 488,48 -> 488,43 -> 488,48 -> 490,48 -> 490,45 -> 490,48 -> 492,48 -> 492,40 -> 492,48
|
||||||
|
541,149 -> 541,141 -> 541,149 -> 543,149 -> 543,144 -> 543,149 -> 545,149 -> 545,144 -> 545,149 -> 547,149 -> 547,148 -> 547,149 -> 549,149 -> 549,144 -> 549,149 -> 551,149 -> 551,141 -> 551,149 -> 553,149 -> 553,147 -> 553,149 -> 555,149 -> 555,146 -> 555,149 -> 557,149 -> 557,147 -> 557,149
|
||||||
|
541,149 -> 541,141 -> 541,149 -> 543,149 -> 543,144 -> 543,149 -> 545,149 -> 545,144 -> 545,149 -> 547,149 -> 547,148 -> 547,149 -> 549,149 -> 549,144 -> 549,149 -> 551,149 -> 551,141 -> 551,149 -> 553,149 -> 553,147 -> 553,149 -> 555,149 -> 555,146 -> 555,149 -> 557,149 -> 557,147 -> 557,149
|
||||||
|
490,35 -> 490,31 -> 490,35 -> 492,35 -> 492,31 -> 492,35 -> 494,35 -> 494,29 -> 494,35 -> 496,35 -> 496,26 -> 496,35
|
||||||
|
490,35 -> 490,31 -> 490,35 -> 492,35 -> 492,31 -> 492,35 -> 494,35 -> 494,29 -> 494,35 -> 496,35 -> 496,26 -> 496,35
|
||||||
|
492,65 -> 492,64 -> 492,65 -> 494,65 -> 494,59 -> 494,65 -> 496,65 -> 496,64 -> 496,65 -> 498,65 -> 498,62 -> 498,65 -> 500,65 -> 500,63 -> 500,65 -> 502,65 -> 502,59 -> 502,65 -> 504,65 -> 504,64 -> 504,65 -> 506,65 -> 506,63 -> 506,65 -> 508,65 -> 508,63 -> 508,65
|
||||||
|
554,133 -> 558,133
|
||||||
|
490,35 -> 490,31 -> 490,35 -> 492,35 -> 492,31 -> 492,35 -> 494,35 -> 494,29 -> 494,35 -> 496,35 -> 496,26 -> 496,35
|
||||||
|
551,136 -> 555,136
|
||||||
|
563,136 -> 567,136
|
||||||
|
492,65 -> 492,64 -> 492,65 -> 494,65 -> 494,59 -> 494,65 -> 496,65 -> 496,64 -> 496,65 -> 498,65 -> 498,62 -> 498,65 -> 500,65 -> 500,63 -> 500,65 -> 502,65 -> 502,59 -> 502,65 -> 504,65 -> 504,64 -> 504,65 -> 506,65 -> 506,63 -> 506,65 -> 508,65 -> 508,63 -> 508,65
|
||||||
|
492,65 -> 492,64 -> 492,65 -> 494,65 -> 494,59 -> 494,65 -> 496,65 -> 496,64 -> 496,65 -> 498,65 -> 498,62 -> 498,65 -> 500,65 -> 500,63 -> 500,65 -> 502,65 -> 502,59 -> 502,65 -> 504,65 -> 504,64 -> 504,65 -> 506,65 -> 506,63 -> 506,65 -> 508,65 -> 508,63 -> 508,65
|
||||||
|
484,48 -> 484,43 -> 484,48 -> 486,48 -> 486,38 -> 486,48 -> 488,48 -> 488,43 -> 488,48 -> 490,48 -> 490,45 -> 490,48 -> 492,48 -> 492,40 -> 492,48
|
||||||
|
492,65 -> 492,64 -> 492,65 -> 494,65 -> 494,59 -> 494,65 -> 496,65 -> 496,64 -> 496,65 -> 498,65 -> 498,62 -> 498,65 -> 500,65 -> 500,63 -> 500,65 -> 502,65 -> 502,59 -> 502,65 -> 504,65 -> 504,64 -> 504,65 -> 506,65 -> 506,63 -> 506,65 -> 508,65 -> 508,63 -> 508,65
|
||||||
|
541,149 -> 541,141 -> 541,149 -> 543,149 -> 543,144 -> 543,149 -> 545,149 -> 545,144 -> 545,149 -> 547,149 -> 547,148 -> 547,149 -> 549,149 -> 549,144 -> 549,149 -> 551,149 -> 551,141 -> 551,149 -> 553,149 -> 553,147 -> 553,149 -> 555,149 -> 555,146 -> 555,149 -> 557,149 -> 557,147 -> 557,149
|
||||||
|
527,102 -> 527,106 -> 523,106 -> 523,111 -> 540,111 -> 540,106 -> 533,106 -> 533,102
|
||||||
|
499,13 -> 499,15 -> 495,15 -> 495,22 -> 506,22 -> 506,15 -> 501,15 -> 501,13
|
||||||
|
492,65 -> 492,64 -> 492,65 -> 494,65 -> 494,59 -> 494,65 -> 496,65 -> 496,64 -> 496,65 -> 498,65 -> 498,62 -> 498,65 -> 500,65 -> 500,63 -> 500,65 -> 502,65 -> 502,59 -> 502,65 -> 504,65 -> 504,64 -> 504,65 -> 506,65 -> 506,63 -> 506,65 -> 508,65 -> 508,63 -> 508,65
|
||||||
|
499,13 -> 499,15 -> 495,15 -> 495,22 -> 506,22 -> 506,15 -> 501,15 -> 501,13
|
||||||
|
541,149 -> 541,141 -> 541,149 -> 543,149 -> 543,144 -> 543,149 -> 545,149 -> 545,144 -> 545,149 -> 547,149 -> 547,148 -> 547,149 -> 549,149 -> 549,144 -> 549,149 -> 551,149 -> 551,141 -> 551,149 -> 553,149 -> 553,147 -> 553,149 -> 555,149 -> 555,146 -> 555,149 -> 557,149 -> 557,147 -> 557,149
|
||||||
|
517,95 -> 522,95
|
||||||
|
503,86 -> 507,86
|
||||||
|
506,68 -> 506,70 -> 502,70 -> 502,77 -> 513,77 -> 513,70 -> 512,70 -> 512,68
|
||||||
|
559,155 -> 563,155
|
||||||
|
521,86 -> 525,86
|
||||||
|
541,149 -> 541,141 -> 541,149 -> 543,149 -> 543,144 -> 543,149 -> 545,149 -> 545,144 -> 545,149 -> 547,149 -> 547,148 -> 547,149 -> 549,149 -> 549,144 -> 549,149 -> 551,149 -> 551,141 -> 551,149 -> 553,149 -> 553,147 -> 553,149 -> 555,149 -> 555,146 -> 555,149 -> 557,149 -> 557,147 -> 557,149
|
||||||
|
541,149 -> 541,141 -> 541,149 -> 543,149 -> 543,144 -> 543,149 -> 545,149 -> 545,144 -> 545,149 -> 547,149 -> 547,148 -> 547,149 -> 549,149 -> 549,144 -> 549,149 -> 551,149 -> 551,141 -> 551,149 -> 553,149 -> 553,147 -> 553,149 -> 555,149 -> 555,146 -> 555,149 -> 557,149 -> 557,147 -> 557,149
|
||||||
|
519,98 -> 519,99 -> 529,99 -> 529,98
|
||||||
|
541,149 -> 541,141 -> 541,149 -> 543,149 -> 543,144 -> 543,149 -> 545,149 -> 545,144 -> 545,149 -> 547,149 -> 547,148 -> 547,149 -> 549,149 -> 549,144 -> 549,149 -> 551,149 -> 551,141 -> 551,149 -> 553,149 -> 553,147 -> 553,149 -> 555,149 -> 555,146 -> 555,149 -> 557,149 -> 557,147 -> 557,149
|
||||||
|
541,149 -> 541,141 -> 541,149 -> 543,149 -> 543,144 -> 543,149 -> 545,149 -> 545,144 -> 545,149 -> 547,149 -> 547,148 -> 547,149 -> 549,149 -> 549,144 -> 549,149 -> 551,149 -> 551,141 -> 551,149 -> 553,149 -> 553,147 -> 553,149 -> 555,149 -> 555,146 -> 555,149 -> 557,149 -> 557,147 -> 557,149
|
||||||
|
527,102 -> 527,106 -> 523,106 -> 523,111 -> 540,111 -> 540,106 -> 533,106 -> 533,102
|
||||||
|
483,51 -> 483,52 -> 500,52 -> 500,51
|
||||||
|
515,86 -> 519,86
|
||||||
|
541,149 -> 541,141 -> 541,149 -> 543,149 -> 543,144 -> 543,149 -> 545,149 -> 545,144 -> 545,149 -> 547,149 -> 547,148 -> 547,149 -> 549,149 -> 549,144 -> 549,149 -> 551,149 -> 551,141 -> 551,149 -> 553,149 -> 553,147 -> 553,149 -> 555,149 -> 555,146 -> 555,149 -> 557,149 -> 557,147 -> 557,149
|
||||||
|
492,65 -> 492,64 -> 492,65 -> 494,65 -> 494,59 -> 494,65 -> 496,65 -> 496,64 -> 496,65 -> 498,65 -> 498,62 -> 498,65 -> 500,65 -> 500,63 -> 500,65 -> 502,65 -> 502,59 -> 502,65 -> 504,65 -> 504,64 -> 504,65 -> 506,65 -> 506,63 -> 506,65 -> 508,65 -> 508,63 -> 508,65
|
||||||
|
541,149 -> 541,141 -> 541,149 -> 543,149 -> 543,144 -> 543,149 -> 545,149 -> 545,144 -> 545,149 -> 547,149 -> 547,148 -> 547,149 -> 549,149 -> 549,144 -> 549,149 -> 551,149 -> 551,141 -> 551,149 -> 553,149 -> 553,147 -> 553,149 -> 555,149 -> 555,146 -> 555,149 -> 557,149 -> 557,147 -> 557,149
|
||||||
|
490,35 -> 490,31 -> 490,35 -> 492,35 -> 492,31 -> 492,35 -> 494,35 -> 494,29 -> 494,35 -> 496,35 -> 496,26 -> 496,35
|
||||||
|
483,51 -> 483,52 -> 500,52 -> 500,51
|
||||||
|
490,35 -> 490,31 -> 490,35 -> 492,35 -> 492,31 -> 492,35 -> 494,35 -> 494,29 -> 494,35 -> 496,35 -> 496,26 -> 496,35
|
||||||
|
541,149 -> 541,141 -> 541,149 -> 543,149 -> 543,144 -> 543,149 -> 545,149 -> 545,144 -> 545,149 -> 547,149 -> 547,148 -> 547,149 -> 549,149 -> 549,144 -> 549,149 -> 551,149 -> 551,141 -> 551,149 -> 553,149 -> 553,147 -> 553,149 -> 555,149 -> 555,146 -> 555,149 -> 557,149 -> 557,147 -> 557,149
|
||||||
|
484,48 -> 484,43 -> 484,48 -> 486,48 -> 486,38 -> 486,48 -> 488,48 -> 488,43 -> 488,48 -> 490,48 -> 490,45 -> 490,48 -> 492,48 -> 492,40 -> 492,48
|
||||||
|
519,98 -> 519,99 -> 529,99 -> 529,98
|
||||||
|
506,68 -> 506,70 -> 502,70 -> 502,77 -> 513,77 -> 513,70 -> 512,70 -> 512,68
|
||||||
|
492,65 -> 492,64 -> 492,65 -> 494,65 -> 494,59 -> 494,65 -> 496,65 -> 496,64 -> 496,65 -> 498,65 -> 498,62 -> 498,65 -> 500,65 -> 500,63 -> 500,65 -> 502,65 -> 502,59 -> 502,65 -> 504,65 -> 504,64 -> 504,65 -> 506,65 -> 506,63 -> 506,65 -> 508,65 -> 508,63 -> 508,65
|
||||||
|
492,65 -> 492,64 -> 492,65 -> 494,65 -> 494,59 -> 494,65 -> 496,65 -> 496,64 -> 496,65 -> 498,65 -> 498,62 -> 498,65 -> 500,65 -> 500,63 -> 500,65 -> 502,65 -> 502,59 -> 502,65 -> 504,65 -> 504,64 -> 504,65 -> 506,65 -> 506,63 -> 506,65 -> 508,65 -> 508,63 -> 508,65
|
||||||
|
527,102 -> 527,106 -> 523,106 -> 523,111 -> 540,111 -> 540,106 -> 533,106 -> 533,102
|
||||||
|
519,98 -> 519,99 -> 529,99 -> 529,98
|
||||||
|
541,149 -> 541,141 -> 541,149 -> 543,149 -> 543,144 -> 543,149 -> 545,149 -> 545,144 -> 545,149 -> 547,149 -> 547,148 -> 547,149 -> 549,149 -> 549,144 -> 549,149 -> 551,149 -> 551,141 -> 551,149 -> 553,149 -> 553,147 -> 553,149 -> 555,149 -> 555,146 -> 555,149 -> 557,149 -> 557,147 -> 557,149
|
||||||
|
484,48 -> 484,43 -> 484,48 -> 486,48 -> 486,38 -> 486,48 -> 488,48 -> 488,43 -> 488,48 -> 490,48 -> 490,45 -> 490,48 -> 492,48 -> 492,40 -> 492,48
|
||||||
|
484,48 -> 484,43 -> 484,48 -> 486,48 -> 486,38 -> 486,48 -> 488,48 -> 488,43 -> 488,48 -> 490,48 -> 490,45 -> 490,48 -> 492,48 -> 492,40 -> 492,48
|
||||||
|
490,35 -> 490,31 -> 490,35 -> 492,35 -> 492,31 -> 492,35 -> 494,35 -> 494,29 -> 494,35 -> 496,35 -> 496,26 -> 496,35
|
||||||
|
490,35 -> 490,31 -> 490,35 -> 492,35 -> 492,31 -> 492,35 -> 494,35 -> 494,29 -> 494,35 -> 496,35 -> 496,26 -> 496,35
|
||||||
|
492,65 -> 492,64 -> 492,65 -> 494,65 -> 494,59 -> 494,65 -> 496,65 -> 496,64 -> 496,65 -> 498,65 -> 498,62 -> 498,65 -> 500,65 -> 500,63 -> 500,65 -> 502,65 -> 502,59 -> 502,65 -> 504,65 -> 504,64 -> 504,65 -> 506,65 -> 506,63 -> 506,65 -> 508,65 -> 508,63 -> 508,65
|
||||||
|
484,48 -> 484,43 -> 484,48 -> 486,48 -> 486,38 -> 486,48 -> 488,48 -> 488,43 -> 488,48 -> 490,48 -> 490,45 -> 490,48 -> 492,48 -> 492,40 -> 492,48
|
||||||
|
557,130 -> 561,130
|
||||||
|
518,84 -> 522,84
|
||||||
|
545,127 -> 558,127
|
||||||
|
492,65 -> 492,64 -> 492,65 -> 494,65 -> 494,59 -> 494,65 -> 496,65 -> 496,64 -> 496,65 -> 498,65 -> 498,62 -> 498,65 -> 500,65 -> 500,63 -> 500,65 -> 502,65 -> 502,59 -> 502,65 -> 504,65 -> 504,64 -> 504,65 -> 506,65 -> 506,63 -> 506,65 -> 508,65 -> 508,63 -> 508,65
|
||||||
|
541,149 -> 541,141 -> 541,149 -> 543,149 -> 543,144 -> 543,149 -> 545,149 -> 545,144 -> 545,149 -> 547,149 -> 547,148 -> 547,149 -> 549,149 -> 549,144 -> 549,149 -> 551,149 -> 551,141 -> 551,149 -> 553,149 -> 553,147 -> 553,149 -> 555,149 -> 555,146 -> 555,149 -> 557,149 -> 557,147 -> 557,149
|
||||||
|
484,48 -> 484,43 -> 484,48 -> 486,48 -> 486,38 -> 486,48 -> 488,48 -> 488,43 -> 488,48 -> 490,48 -> 490,45 -> 490,48 -> 492,48 -> 492,40 -> 492,48
|
||||||
|
556,152 -> 560,152
|
||||||
|
506,68 -> 506,70 -> 502,70 -> 502,77 -> 513,77 -> 513,70 -> 512,70 -> 512,68
|
||||||
|
559,161 -> 563,161
|
||||||
|
541,149 -> 541,141 -> 541,149 -> 543,149 -> 543,144 -> 543,149 -> 545,149 -> 545,144 -> 545,149 -> 547,149 -> 547,148 -> 547,149 -> 549,149 -> 549,144 -> 549,149 -> 551,149 -> 551,141 -> 551,149 -> 553,149 -> 553,147 -> 553,149 -> 555,149 -> 555,146 -> 555,149 -> 557,149 -> 557,147 -> 557,149
|
||||||
|
541,165 -> 541,166 -> 551,166 -> 551,165
|
||||||
|
490,35 -> 490,31 -> 490,35 -> 492,35 -> 492,31 -> 492,35 -> 494,35 -> 494,29 -> 494,35 -> 496,35 -> 496,26 -> 496,35
|
||||||
|
538,114 -> 538,116 -> 536,116 -> 536,122 -> 552,122 -> 552,116 -> 544,116 -> 544,114
|
||||||
|
484,48 -> 484,43 -> 484,48 -> 486,48 -> 486,38 -> 486,48 -> 488,48 -> 488,43 -> 488,48 -> 490,48 -> 490,45 -> 490,48 -> 492,48 -> 492,40 -> 492,48
|
||||||
|
527,102 -> 527,106 -> 523,106 -> 523,111 -> 540,111 -> 540,106 -> 533,106 -> 533,102
|
||||||
|
492,65 -> 492,64 -> 492,65 -> 494,65 -> 494,59 -> 494,65 -> 496,65 -> 496,64 -> 496,65 -> 498,65 -> 498,62 -> 498,65 -> 500,65 -> 500,63 -> 500,65 -> 502,65 -> 502,59 -> 502,65 -> 504,65 -> 504,64 -> 504,65 -> 506,65 -> 506,63 -> 506,65 -> 508,65 -> 508,63 -> 508,65
|
||||||
|
509,86 -> 513,86
|
||||||
|
492,65 -> 492,64 -> 492,65 -> 494,65 -> 494,59 -> 494,65 -> 496,65 -> 496,64 -> 496,65 -> 498,65 -> 498,62 -> 498,65 -> 500,65 -> 500,63 -> 500,65 -> 502,65 -> 502,59 -> 502,65 -> 504,65 -> 504,64 -> 504,65 -> 506,65 -> 506,63 -> 506,65 -> 508,65 -> 508,63 -> 508,65
|
||||||
|
484,48 -> 484,43 -> 484,48 -> 486,48 -> 486,38 -> 486,48 -> 488,48 -> 488,43 -> 488,48 -> 490,48 -> 490,45 -> 490,48 -> 492,48 -> 492,40 -> 492,48
|
||||||
|
520,92 -> 525,92
|
||||||
|
556,158 -> 560,158
|
||||||
|
541,149 -> 541,141 -> 541,149 -> 543,149 -> 543,144 -> 543,149 -> 545,149 -> 545,144 -> 545,149 -> 547,149 -> 547,148 -> 547,149 -> 549,149 -> 549,144 -> 549,149 -> 551,149 -> 551,141 -> 551,149 -> 553,149 -> 553,147 -> 553,149 -> 555,149 -> 555,146 -> 555,149 -> 557,149 -> 557,147 -> 557,149
|
||||||
|
553,155 -> 557,155
|
||||||
|
492,65 -> 492,64 -> 492,65 -> 494,65 -> 494,59 -> 494,65 -> 496,65 -> 496,64 -> 496,65 -> 498,65 -> 498,62 -> 498,65 -> 500,65 -> 500,63 -> 500,65 -> 502,65 -> 502,59 -> 502,65 -> 504,65 -> 504,64 -> 504,65 -> 506,65 -> 506,63 -> 506,65 -> 508,65 -> 508,63 -> 508,65
|
||||||
|
538,114 -> 538,116 -> 536,116 -> 536,122 -> 552,122 -> 552,116 -> 544,116 -> 544,114
|
||||||
|
538,114 -> 538,116 -> 536,116 -> 536,122 -> 552,122 -> 552,116 -> 544,116 -> 544,114
|
||||||
|
492,65 -> 492,64 -> 492,65 -> 494,65 -> 494,59 -> 494,65 -> 496,65 -> 496,64 -> 496,65 -> 498,65 -> 498,62 -> 498,65 -> 500,65 -> 500,63 -> 500,65 -> 502,65 -> 502,59 -> 502,65 -> 504,65 -> 504,64 -> 504,65 -> 506,65 -> 506,63 -> 506,65 -> 508,65 -> 508,63 -> 508,65
|
||||||
|
541,149 -> 541,141 -> 541,149 -> 543,149 -> 543,144 -> 543,149 -> 545,149 -> 545,144 -> 545,149 -> 547,149 -> 547,148 -> 547,149 -> 549,149 -> 549,144 -> 549,149 -> 551,149 -> 551,141 -> 551,149 -> 553,149 -> 553,147 -> 553,149 -> 555,149 -> 555,146 -> 555,149 -> 557,149 -> 557,147 -> 557,149
|
||||||
|
499,13 -> 499,15 -> 495,15 -> 495,22 -> 506,22 -> 506,15 -> 501,15 -> 501,13
|
||||||
|
562,158 -> 566,158
|
||||||
|
492,65 -> 492,64 -> 492,65 -> 494,65 -> 494,59 -> 494,65 -> 496,65 -> 496,64 -> 496,65 -> 498,65 -> 498,62 -> 498,65 -> 500,65 -> 500,63 -> 500,65 -> 502,65 -> 502,59 -> 502,65 -> 504,65 -> 504,64 -> 504,65 -> 506,65 -> 506,63 -> 506,65 -> 508,65 -> 508,63 -> 508,65
|
||||||
|
541,149 -> 541,141 -> 541,149 -> 543,149 -> 543,144 -> 543,149 -> 545,149 -> 545,144 -> 545,149 -> 547,149 -> 547,148 -> 547,149 -> 549,149 -> 549,144 -> 549,149 -> 551,149 -> 551,141 -> 551,149 -> 553,149 -> 553,147 -> 553,149 -> 555,149 -> 555,146 -> 555,149 -> 557,149 -> 557,147 -> 557,149
|
||||||
|
492,65 -> 492,64 -> 492,65 -> 494,65 -> 494,59 -> 494,65 -> 496,65 -> 496,64 -> 496,65 -> 498,65 -> 498,62 -> 498,65 -> 500,65 -> 500,63 -> 500,65 -> 502,65 -> 502,59 -> 502,65 -> 504,65 -> 504,64 -> 504,65 -> 506,65 -> 506,63 -> 506,65 -> 508,65 -> 508,63 -> 508,65
|
||||||
|
550,158 -> 554,158
|
||||||
|
515,82 -> 519,82
|
||||||
|
557,136 -> 561,136
|
||||||
|
506,68 -> 506,70 -> 502,70 -> 502,77 -> 513,77 -> 513,70 -> 512,70 -> 512,68
|
||||||
|
547,161 -> 551,161
|
||||||
|
541,149 -> 541,141 -> 541,149 -> 543,149 -> 543,144 -> 543,149 -> 545,149 -> 545,144 -> 545,149 -> 547,149 -> 547,148 -> 547,149 -> 549,149 -> 549,144 -> 549,149 -> 551,149 -> 551,141 -> 551,149 -> 553,149 -> 553,147 -> 553,149 -> 555,149 -> 555,146 -> 555,149 -> 557,149 -> 557,147 -> 557,149
|
||||||
|
541,149 -> 541,141 -> 541,149 -> 543,149 -> 543,144 -> 543,149 -> 545,149 -> 545,144 -> 545,149 -> 547,149 -> 547,148 -> 547,149 -> 549,149 -> 549,144 -> 549,149 -> 551,149 -> 551,141 -> 551,149 -> 553,149 -> 553,147 -> 553,149 -> 555,149 -> 555,146 -> 555,149 -> 557,149 -> 557,147 -> 557,149
|
||||||
|
531,95 -> 536,95
|
||||||
|
527,102 -> 527,106 -> 523,106 -> 523,111 -> 540,111 -> 540,106 -> 533,106 -> 533,102
|
||||||
|
541,149 -> 541,141 -> 541,149 -> 543,149 -> 543,144 -> 543,149 -> 545,149 -> 545,144 -> 545,149 -> 547,149 -> 547,148 -> 547,149 -> 549,149 -> 549,144 -> 549,149 -> 551,149 -> 551,141 -> 551,149 -> 553,149 -> 553,147 -> 553,149 -> 555,149 -> 555,146 -> 555,149 -> 557,149 -> 557,147 -> 557,149
|
||||||
|
527,92 -> 532,92
|
||||||
|
523,89 -> 528,89
|
||||||
|
541,149 -> 541,141 -> 541,149 -> 543,149 -> 543,144 -> 543,149 -> 545,149 -> 545,144 -> 545,149 -> 547,149 -> 547,148 -> 547,149 -> 549,149 -> 549,144 -> 549,149 -> 551,149 -> 551,141 -> 551,149 -> 553,149 -> 553,147 -> 553,149 -> 555,149 -> 555,146 -> 555,149 -> 557,149 -> 557,147 -> 557,149
|
||||||
|
499,13 -> 499,15 -> 495,15 -> 495,22 -> 506,22 -> 506,15 -> 501,15 -> 501,13
|
||||||
|
492,65 -> 492,64 -> 492,65 -> 494,65 -> 494,59 -> 494,65 -> 496,65 -> 496,64 -> 496,65 -> 498,65 -> 498,62 -> 498,65 -> 500,65 -> 500,63 -> 500,65 -> 502,65 -> 502,59 -> 502,65 -> 504,65 -> 504,64 -> 504,65 -> 506,65 -> 506,63 -> 506,65 -> 508,65 -> 508,63 -> 508,65
|
||||||
|
541,149 -> 541,141 -> 541,149 -> 543,149 -> 543,144 -> 543,149 -> 545,149 -> 545,144 -> 545,149 -> 547,149 -> 547,148 -> 547,149 -> 549,149 -> 549,144 -> 549,149 -> 551,149 -> 551,141 -> 551,149 -> 553,149 -> 553,147 -> 553,149 -> 555,149 -> 555,146 -> 555,149 -> 557,149 -> 557,147 -> 557,149
|
||||||
|
527,102 -> 527,106 -> 523,106 -> 523,111 -> 540,111 -> 540,106 -> 533,106 -> 533,102
|
||||||
|
490,35 -> 490,31 -> 490,35 -> 492,35 -> 492,31 -> 492,35 -> 494,35 -> 494,29 -> 494,35 -> 496,35 -> 496,26 -> 496,35
|
||||||
|
492,65 -> 492,64 -> 492,65 -> 494,65 -> 494,59 -> 494,65 -> 496,65 -> 496,64 -> 496,65 -> 498,65 -> 498,62 -> 498,65 -> 500,65 -> 500,63 -> 500,65 -> 502,65 -> 502,59 -> 502,65 -> 504,65 -> 504,64 -> 504,65 -> 506,65 -> 506,63 -> 506,65 -> 508,65 -> 508,63 -> 508,65
|
||||||
|
560,133 -> 564,133
|
||||||
|
506,68 -> 506,70 -> 502,70 -> 502,77 -> 513,77 -> 513,70 -> 512,70 -> 512,68
|
||||||
|
538,114 -> 538,116 -> 536,116 -> 536,122 -> 552,122 -> 552,116 -> 544,116 -> 544,114
|
||||||
|
524,95 -> 529,95
|
||||||
|
492,65 -> 492,64 -> 492,65 -> 494,65 -> 494,59 -> 494,65 -> 496,65 -> 496,64 -> 496,65 -> 498,65 -> 498,62 -> 498,65 -> 500,65 -> 500,63 -> 500,65 -> 502,65 -> 502,59 -> 502,65 -> 504,65 -> 504,64 -> 504,65 -> 506,65 -> 506,63 -> 506,65 -> 508,65 -> 508,63 -> 508,65
|
||||||
@@ -134,7 +134,7 @@ pub fn get_both<T>(slice: &mut [T], first: usize, second: usize) -> (&mut T, &mu
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
#[derive(Default)]
|
#[derive(Debug, Default)]
|
||||||
pub struct IndexSet(Vec<u32>);
|
pub struct IndexSet(Vec<u32>);
|
||||||
|
|
||||||
impl IndexSet {
|
impl IndexSet {
|
||||||
|
|||||||
@@ -1,9 +1,155 @@
|
|||||||
use anyhow::Result;
|
use anyhow::Result;
|
||||||
|
use nom::branch::alt;
|
||||||
|
use nom::bytes::complete::tag;
|
||||||
|
use nom::character::complete::newline;
|
||||||
|
use nom::combinator::map_res;
|
||||||
|
use nom::combinator::opt;
|
||||||
|
use nom::sequence::separated_pair;
|
||||||
|
use nom::sequence::terminated;
|
||||||
|
use nom::IResult;
|
||||||
|
|
||||||
pub fn part1(_input: &[u8]) -> Result<String> {
|
use crate::common::parse_input;
|
||||||
anyhow::bail!("not implemented")
|
use crate::common::reduce_many1;
|
||||||
|
use crate::common::IndexSet;
|
||||||
|
|
||||||
|
#[derive(Debug)]
|
||||||
|
struct Cave {
|
||||||
|
width: usize,
|
||||||
|
height: usize,
|
||||||
|
occupied: IndexSet,
|
||||||
|
floor: usize,
|
||||||
}
|
}
|
||||||
|
|
||||||
pub fn part2(_input: &[u8]) -> Result<String> {
|
impl Cave {
|
||||||
anyhow::bail!("not implemented")
|
pub fn insert(&mut self, x: usize, y: usize) -> bool {
|
||||||
|
// Note: we're indexing column major for better cache locality
|
||||||
|
self.occupied.insert(self.floor * x + y)
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn drop(&mut self, x: usize, y: usize, total: &mut usize) -> bool {
|
||||||
|
if x >= self.width || y >= self.height {
|
||||||
|
return false;
|
||||||
|
} else if !self.insert(x, y) {
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
|
||||||
|
// x + usize::MAX is used to compute x - 1 because usize - isize doesn't exist in stable yet.
|
||||||
|
let supported = [0, usize::MAX, 1]
|
||||||
|
.into_iter()
|
||||||
|
.all(|dx| self.drop(x.wrapping_add(dx), y + 1, total));
|
||||||
|
|
||||||
|
if supported {
|
||||||
|
*total += 1;
|
||||||
|
}
|
||||||
|
|
||||||
|
supported
|
||||||
|
}
|
||||||
|
|
||||||
|
fn drop2(&mut self, x: usize, y: usize, total: &mut usize) {
|
||||||
|
if y >= self.floor || !self.insert(x, y) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
*total += 1;
|
||||||
|
|
||||||
|
for dx in [0, usize::MAX, 1] {
|
||||||
|
self.drop2(x.wrapping_add(dx), y + 1, total);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
fn parse_pair(input: &[u8]) -> IResult<&[u8], (usize, usize)> {
|
||||||
|
fn parse_usize(input: &[u8]) -> IResult<&[u8], usize> {
|
||||||
|
map_res(nom::character::complete::u32, usize::try_from)(input)
|
||||||
|
}
|
||||||
|
|
||||||
|
separated_pair(parse_usize, tag(","), parse_usize)(input)
|
||||||
|
}
|
||||||
|
|
||||||
|
fn find_dimensions(input: &[u8]) -> IResult<&[u8], (usize, usize)> {
|
||||||
|
reduce_many1(
|
||||||
|
terminated(parse_pair, alt((tag(" -> "), tag("\n")))), // Somehow this cant be `newline` because type deduction goes awry
|
||||||
|
|(width, height), (x, y)| (width.max(x + 1), height.max(y + 1)),
|
||||||
|
)(input)
|
||||||
|
}
|
||||||
|
|
||||||
|
fn parse_cave(input: &[u8]) -> IResult<&[u8], Cave> {
|
||||||
|
let (width, height) = find_dimensions(input)?.1;
|
||||||
|
|
||||||
|
let floor = height + 1;
|
||||||
|
|
||||||
|
// Assume parsing went somewhat right
|
||||||
|
debug_assert_ne!(width, 0);
|
||||||
|
debug_assert_ne!(height, 0);
|
||||||
|
|
||||||
|
let mut cave = Cave {
|
||||||
|
width,
|
||||||
|
height,
|
||||||
|
occupied: IndexSet::with_capacity(width * floor),
|
||||||
|
floor,
|
||||||
|
};
|
||||||
|
|
||||||
|
let mut input = input;
|
||||||
|
|
||||||
|
while input != &[][..] {
|
||||||
|
let new_input = terminated(
|
||||||
|
reduce_many1(
|
||||||
|
terminated(parse_pair, opt(tag(" -> "))),
|
||||||
|
|(x_old, y_old), (x_prime, y_prime)| {
|
||||||
|
if x_prime == x_old {
|
||||||
|
for y in (y_old.min(y_prime))..=(y_old.max(y_prime)) {
|
||||||
|
cave.insert(x_old, y);
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
for x in (x_old.min(x_prime))..=(x_old.max(x_prime)) {
|
||||||
|
cave.insert(x, y_old);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
(x_prime, y_prime)
|
||||||
|
},
|
||||||
|
),
|
||||||
|
newline,
|
||||||
|
)(input)?
|
||||||
|
.0;
|
||||||
|
|
||||||
|
input = new_input;
|
||||||
|
}
|
||||||
|
|
||||||
|
Ok((input, cave))
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn part1(input: &[u8]) -> Result<String> {
|
||||||
|
let mut cave = parse_input(input, parse_cave)?;
|
||||||
|
|
||||||
|
let mut total = 0;
|
||||||
|
|
||||||
|
cave.drop(500, 0, &mut total);
|
||||||
|
|
||||||
|
Ok(total.to_string())
|
||||||
|
}
|
||||||
|
|
||||||
|
pub fn part2(input: &[u8]) -> Result<String> {
|
||||||
|
let mut cave = parse_input(input, parse_cave)?;
|
||||||
|
|
||||||
|
let mut total = 0;
|
||||||
|
cave.drop2(500, 0, &mut total);
|
||||||
|
|
||||||
|
Ok(total.to_string())
|
||||||
|
}
|
||||||
|
|
||||||
|
#[cfg(test)]
|
||||||
|
mod tests {
|
||||||
|
use super::*;
|
||||||
|
|
||||||
|
const SAMPLE: &[u8] = include_bytes!("samples/14.txt");
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn sample_part1() {
|
||||||
|
assert_eq!(part1(SAMPLE).unwrap(), "24");
|
||||||
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn sample_part2() {
|
||||||
|
assert_eq!(part2(SAMPLE).unwrap(), "93")
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|||||||
2
2022/src/samples/14.txt
Normal file
2
2022/src/samples/14.txt
Normal file
@@ -0,0 +1,2 @@
|
|||||||
|
498,4 -> 498,6 -> 496,6
|
||||||
|
503,4 -> 502,4 -> 502,9 -> 494,9
|
||||||
Reference in New Issue
Block a user