use ahash::AHashMap; use anyhow::Result; use nom::branch::alt; use nom::bytes::complete::tag; use nom::bytes::complete::take; use nom::character::complete::alpha1; use nom::character::complete::newline; use nom::combinator::map; use nom::combinator::map_res; use nom::multi::fold_many1; use nom::sequence::preceded; use nom::sequence::terminated; use nom::sequence::tuple; use nom::IResult; use crate::common::parse_input; type Input<'a> = AHashMap<&'a [u8], Monkey<'a>>; #[derive(Clone, Copy)] enum Operation { Mul, Div, Add, Sub, } impl Operation { pub fn apply(self, first: i64, second: i64) -> i64 { match self { Operation::Mul => first * second, Operation::Div => first / second, Operation::Add => first + second, Operation::Sub => first - second, } } } impl TryFrom for Operation { type Error = anyhow::Error; fn try_from(value: u8) -> Result { Ok(match value { b'*' => Operation::Mul, b'/' => Operation::Div, b'+' => Operation::Add, b'-' => Operation::Sub, other => anyhow::bail!("Invalid operation: {other}"), }) } } enum Monkey<'a> { Operation(&'a [u8], &'a [u8], Operation), Literal(i64), } fn parse_monkeys(input: &[u8]) -> IResult<&[u8], Input> { let parse_monkey = terminated( tuple(( alpha1, preceded( tag(": "), alt(( map(nom::character::complete::i64, Monkey::Literal), map( tuple(( terminated(alpha1, tag(" ")), map_res(take(1usize), |v: &[u8]| Operation::try_from(v[0])), preceded(tag(" "), alpha1), )), |(first, operation, second)| Monkey::Operation(first, second, operation), ), )), ), )), newline, ); fold_many1(parse_monkey, AHashMap::new, |mut map, (name, monkey)| { map.insert(name, monkey); map })(input) } fn evaluate(monkeys: &Input, start: &[u8]) -> i64 { match &monkeys[start] { Monkey::Operation(first, second, op) => { let first = evaluate(monkeys, first); let second = evaluate(monkeys, second); op.apply(first, second) } Monkey::Literal(value) => *value, } } enum IncompleteSide { Left, Right, } fn evaluate2( monkeys: &Input, start: &[u8], ) -> std::result::Result> { if start == b"humn" { return Err(Vec::new()); } match &monkeys[start] { Monkey::Operation(first, second, op) => { match (evaluate2(monkeys, first), evaluate2(monkeys, second)) { (Ok(first), Ok(second)) => Ok(op.apply(first, second)), (Ok(first), Err(mut incomplete)) => { incomplete.push((first, IncompleteSide::Right, *op)); Err(incomplete) } (Err(mut incomplete), Ok(second)) => { incomplete.push((second, IncompleteSide::Left, *op)); Err(incomplete) } (Err(_), Err(_)) => unreachable!("Should not happen on fair input"), } } Monkey::Literal(val) => Ok(*val), } } pub fn part1(input: &[u8]) -> Result { let monkeys = parse_input(input, parse_monkeys)?; Ok(evaluate(&monkeys, b"root").to_string()) } pub fn part2(input: &[u8]) -> Result { let monkeys = parse_input(input, parse_monkeys)?; let Monkey::Operation(first, second, _) = &monkeys[&b"root"[..]] else { anyhow::bail!("root is a literal somehow")}; let result = match (evaluate2(&monkeys, first), evaluate2(&monkeys, second)) { (Ok(_), Ok(_)) => anyhow::bail!("both arms succeeded"), (Ok(goal), Err(incomplete)) | (Err(incomplete), Ok(goal)) => incomplete .into_iter() .rev() .fold(goal, |next, (complete, arm, op)| match (op, arm) { // Multiplication and addition are commutative so the arm doesn't matter (Operation::Mul, _) => { // This was a very useful sanity check debug_assert_eq!(next % complete, 0); next / complete } (Operation::Add, _) => next - complete, // The other operations need some tweaking. x: unknown quantity. c: known quantity. n: current value // x - c = n -> x = n + c (Operation::Sub, IncompleteSide::Left) => next + complete, // c - x = n -> c = n + x -> c - n = x (Operation::Sub, IncompleteSide::Right) => complete - next, // Similarly for division, if we miss the left arm we can undo the division and multiply instead // x / c = n -> x = n * c (Operation::Div, IncompleteSide::Left) => next * complete, // c / x = n -> c = n * x -> c / n = x (Operation::Div, IncompleteSide::Right) => complete / next, }), (Err(_), Err(_)) => anyhow::bail!("both arms failed"), }; Ok(result.to_string()) } #[cfg(test)] mod tests { use super::*; const SAMPLE: &[u8] = include_bytes!("samples/21.txt"); #[test] fn sample_part1() { assert_eq!(part1(SAMPLE).unwrap(), "152"); } #[test] fn sample_part2() { assert_eq!(part2(SAMPLE).unwrap(), "301"); } }