use std::mem; use anyhow::Context; use anyhow::Result; use nom::branch::alt; use nom::bytes::complete::tag; use nom::bytes::complete::take_until; use nom::character::complete::newline; use nom::combinator::map; use nom::combinator::value; use nom::multi::many1; use nom::sequence::separated_pair; use nom::sequence::terminated; use nom::IResult; use crate::common::parse_input; // This describes the transitions between the different squares. // // For every direction, write down which direction you end up going, in which square, and // whether you should flip the axis. // // The squares are laid out as follows: // // #01 // #2# // 34# // 5## // // Entries are specified right, down, left, up. #[allow(dead_code)] const TRANSITIONS: [[(Direction, usize, bool); 4]; 6] = [ // Square 0 [ (Direction::Right, 1, false), (Direction::Down, 2, false), (Direction::Right, 3, true), (Direction::Right, 5, false), ], // Square 1 [ (Direction::Left, 4, true), (Direction::Left, 2, false), (Direction::Left, 0, false), (Direction::Up, 5, false), ], // Square 2 [ (Direction::Up, 1, false), (Direction::Down, 4, false), (Direction::Down, 3, false), (Direction::Up, 0, false), ], // Square 3 [ (Direction::Right, 4, false), (Direction::Down, 5, false), (Direction::Right, 0, true), (Direction::Right, 2, false), ], // Square 4 [ (Direction::Left, 1, true), (Direction::Left, 5, false), (Direction::Left, 3, false), (Direction::Up, 2, false), ], // Square 5 [ (Direction::Up, 4, false), (Direction::Down, 1, false), (Direction::Down, 0, false), (Direction::Up, 3, false), ], ]; #[derive(Clone, Copy, Debug)] enum Step { Forward(u32), Left, Right, } #[derive(Clone, Copy, Debug)] enum Direction { Up = 3, Down = 1, Left = 2, Right = 0, } type Map<'a> = Vec<&'a [u8]>; impl Direction { fn turn_left(self) -> Self { match self { Direction::Up => Direction::Left, Direction::Down => Direction::Right, Direction::Left => Direction::Down, Direction::Right => Direction::Up, } } fn turn_right(self) -> Self { match self { Direction::Up => Direction::Right, Direction::Down => Direction::Left, Direction::Left => Direction::Up, Direction::Right => Direction::Down, } } } fn parse_map(input: &[u8]) -> IResult<&[u8], (Map, Vec)> { separated_pair( map(take_until("\n\n"), |map: &[u8]| { map.split(|&b| b == b'\n').collect() }), tag("\n\n"), terminated( many1(alt(( map(nom::character::complete::u32, Step::Forward), value(Step::Right, tag("R")), value(Step::Left, tag("L")), ))), newline, ), )(input) } fn find_starting_x(top_row: &[u8]) -> Result { top_row .iter() .position(|&b| b == b'.') .context("Could not find starting position") } pub fn part1(input: &[u8]) -> Result { let (map, steps) = parse_input(input, parse_map)?; let mut dir = Direction::Right; let mut y = 0; let mut x = find_starting_x(&map[y])?; for step in steps { match step { Step::Forward(amount) => match dir { Direction::Up => { for _ in 0..amount { if y == 0 || map[y - 1].get(x).map_or(true, |&b| b == b' ') { let new_y = map .iter() .rposition(|line| { line.get(x).map_or(false, |&b| b == b'.' || b == b'#') }) .unwrap(); if map[new_y][x] == b'#' { break; } else { y = new_y; } } else if map[y - 1][x] == b'#' { break; } else { y -= 1; } } } Direction::Down => { for _ in 0..amount { if y + 1 >= map.len() || map[y + 1].get(x).map_or(true, |&b| b == b' ') { let new_y = map .iter() .position(|line| { line.get(x).map_or(false, |&b| b == b'.' || b == b'#') }) .unwrap(); if map[new_y][x] == b'#' { break; } else { y = new_y; } } else if map[y + 1][x] == b'#' { break; } else { y += 1; } } } Direction::Left => { for _ in 0..amount { if x == 0 || map[y][x - 1] == b' ' { let new_x = map[y] .iter() .rposition(|&b| b == b'.' || b == b'#') .unwrap(); if map[y][new_x] == b'.' { x = new_x; } else { break; } } else if map[y][x - 1] == b'#' { break; } else { x -= 1; } } } Direction::Right => { for _ in 0..amount { if x + 1 >= map[y].len() || map[y][x + 1] == b' ' { let new_x = map[y].iter().position(|&b| b == b'.' || b == b'#').unwrap(); if map[y][new_x] == b'.' { x = new_x; } else { break; } } else if map[y][x + 1] == b'#' { break; } else { x += 1; } } } }, Step::Left => dir = dir.turn_left(), Step::Right => dir = dir.turn_right(), } } Ok((1000 * (y + 1) + 4 * (x + 1) + dir as usize).to_string()) } fn side_length_of(map: &[&[u8]]) -> usize { let taken_tiles = map .iter() .flat_map(|r| r.iter()) .filter(|c| !c.is_ascii_whitespace()) .count(); // Future Bert: this needs to be an integer square root. ((taken_tiles / 6) as f64).sqrt() as usize } fn break_squares<'a>(map: &[&'a [u8]], side_length: usize) -> [(Map<'a>, usize, usize); 6] { let mut result: [(Map<'a>, usize, usize); 6] = Default::default(); let mut row_holder = [(); 4].map(|_| Map::new()); let mut index = 0; for (y, block_row) in map.chunks_exact(side_length).enumerate() { for row in block_row { for (i, segment) in row.chunks_exact(side_length).enumerate() { if segment[0] != b' ' { row_holder[i].push(segment); } } } for (x, potential_side) in row_holder.iter_mut().enumerate() { if !potential_side.is_empty() { mem::swap(potential_side, &mut result[index].0); result[index].1 = x; result[index].2 = y; index += 1; } } } result } pub fn part2(input: &[u8]) -> Result { let (map, steps) = parse_input(input, parse_map)?; let side_length = side_length_of(&map); let squares = break_squares(&map, side_length); let mut current_square = 0; let mut y = 0; let mut x = find_starting_x(&squares[current_square].0[y])?; let mut dir = Direction::Right; for step in steps { match step { Step::Left => dir = dir.turn_left(), Step::Right => dir = dir.turn_right(), Step::Forward(amount) => anyhow::bail!("not implemented"), } } let real_x = x + squares[current_square].1 * side_length; let real_y = y + squares[current_square].2 * side_length; Ok((1000 * (real_y + 1) + 4 * (real_x + 1) + dir as usize).to_string()) } #[cfg(test)] mod tests { use super::*; const SAMPLE: &[u8] = include_bytes!("samples/22.txt"); #[test] fn sample_part1() { assert_eq!(part1(SAMPLE).unwrap(), "6032"); } #[test] fn test_side_length() { let (map, _) = parse_input(SAMPLE, parse_map).unwrap(); assert_eq!(side_length_of(&map), 4); } #[test] fn test_break_squares() { let (map, _) = parse_input(SAMPLE, parse_map).unwrap(); let side_length = side_length_of(&map); let squares = break_squares(&map, side_length); assert_eq!(squares[0].1, 2); assert_eq!(squares[0].2, 0); assert_eq!(squares[5].1, 3); assert_eq!(squares[5].2, 2); for square in squares { assert_eq!(square.0.len(), side_length); for row in square.0 { assert_eq!(row.len(), side_length); } } } #[test] fn test_sanity_transitions() { for (cur_face, &face) in TRANSITIONS.iter().enumerate() { for (dir, (arrive_dir, arrive_face, invert)) in face.into_iter().enumerate() { let inverse_dir = (arrive_dir as usize + 2) % 4; let (back_dir, back_face, back_invert) = TRANSITIONS[arrive_face][inverse_dir]; assert_eq!( invert, back_invert, "Reciprocal invert failed: face {cur_face} dir {dir} to face {arrive_face} arrives as {arrive_dir:?}" ); assert_eq!(back_face, cur_face, "Reciprocal transition failed: face {cur_face} dir {dir} arrives at {arrive_face} but returns at {back_face}"); let correct_back_dir = (dir + 2) % 4; assert_eq!(back_dir as usize, correct_back_dir, "Reciprocal direction failed: face {cur_face} dir {dir} did not arrive the opposite direction from {arrive_face}"); } } } }