Files
adventofcode/2021/src/day19.rs

356 lines
8.4 KiB
Rust

use std::collections::HashMap;
use std::collections::HashSet;
use std::io::Read;
use std::ops::Add;
use std::ops::Deref;
use std::ops::Sub;
use nom::bytes::complete::tag;
use nom::character::complete::newline;
use nom::combinator::map;
use nom::multi::many1;
use nom::multi::separated_list1;
use nom::sequence::delimited;
use nom::sequence::preceded;
use nom::sequence::terminated;
use nom::sequence::tuple;
use nom::IResult;
use crate::common::read_input;
#[derive(Debug, Copy, Clone, PartialEq, Eq, Hash, Default)]
struct Point3(pub [i32; 3]);
impl Point3 {
pub fn manhattan(&self) -> i32 {
self.0.into_iter().map(i32::abs).sum()
}
pub fn euler_square(&self) -> i32 {
self.0.into_iter().map(|c| c * c).sum()
}
}
impl Sub for Point3 {
type Output = Self;
fn sub(self, rhs: Self) -> Self::Output {
Point3([
self.0[0] - rhs.0[0],
self.0[1] - rhs.0[1],
self.0[2] - rhs.0[2],
])
}
}
impl Add for Point3 {
type Output = Self;
fn add(self, rhs: Self) -> Self::Output {
Point3([
self.0[0] + rhs.0[0],
self.0[1] + rhs.0[1],
self.0[2] + rhs.0[2],
])
}
}
struct Scanner {
visible: Vec<Point3>,
distances: HashMap<i32, (Point3, Point3)>,
}
impl Scanner {
pub fn new(visible: Vec<Point3>) -> Self {
let distances = visible
.iter()
.enumerate()
.flat_map(|(skip, &a)| {
visible[(skip + 1)..]
.iter()
.map(move |&b| ((a - b).euler_square(), (a, b)))
})
.collect();
Self { visible, distances }
}
pub fn can_overlap(&self, other: &Self) -> bool {
other
.distances
.keys()
.filter(|&k| self.distances.contains_key(k))
.count()
>= 11
}
}
impl Deref for Scanner {
type Target = [Point3];
fn deref(&self) -> &Self::Target {
&self.visible
}
}
struct Rotations<'a> {
points: &'a [Point3],
axes: [usize; 3],
rotation_index: usize,
}
impl<'a> Rotations<'a> {
const ROTATIONS: [[i32; 3]; 8] = [
[1, 1, 1],
[1, 1, -1],
[1, -1, 1],
[1, -1, -1],
[-1, 1, 1],
[-1, 1, -1],
[-1, -1, 1],
[-1, -1, -1],
];
pub fn new(points: &'a [Point3]) -> Self {
Self {
points,
axes: [0, 1, 2],
rotation_index: 0,
}
}
}
impl Iterator for Rotations<'_> {
type Item = Vec<Point3>;
fn next(&mut self) -> Option<Self::Item> {
if self.rotation_index >= Self::ROTATIONS.len() {
if !next_permutation(&mut self.axes) {
return None;
}
self.rotation_index = 0;
}
let axes = &self.axes;
let rot = &Self::ROTATIONS[self.rotation_index];
let result = self
.points
.iter()
.map(|Point3(coords)| {
Point3([
coords[axes[0]] * rot[0],
coords[axes[1]] * rot[1],
coords[axes[2]] * rot[2],
])
})
.collect();
self.rotation_index += 1;
Some(result)
}
}
fn parse_point(input: &[u8]) -> IResult<&[u8], Point3> {
use nom::character::complete::char;
use nom::character::complete::i32;
map(
tuple((i32, preceded(char(','), i32), preceded(char(','), i32))),
|(x, y, z)| Point3([x, y, z]),
)(input)
}
fn parse_input(input: &[u8]) -> IResult<&[u8], Vec<Scanner>> {
use nom::character::complete::i32;
let parse_header = delimited(tag("--- scanner "), i32, tag(" ---\n"));
let parse_scanner = map(
preceded(parse_header, many1(terminated(parse_point, newline))),
Scanner::new,
);
separated_list1(newline, parse_scanner)(input)
}
fn find_pivot(group: &Scanner, related: &Scanner) -> Option<Point3> {
let mut counter = HashMap::new();
for (distance, &(a, b)) in &group.distances {
if related.distances.contains_key(distance) {
*counter.entry(a).or_insert(0) += 1;
*counter.entry(b).or_insert(0) += 1;
}
}
counter
.into_iter()
.max_by_key(|(_, count)| *count)
.map(|t| t.0)
}
fn try_overlap(matched: &Scanner, candidate: &Scanner) -> Option<(Point3, Scanner)> {
if !matched.can_overlap(candidate) {
return None;
}
let matched_pivot = find_pivot(matched, candidate)?;
let correct: HashSet<_> = matched.iter().map(|&base| base - matched_pivot).collect();
for rot in Rotations::new(candidate) {
for &start in &rot {
let translated_iter = rot.iter().map(|&other| other - start);
if translated_iter
.clone()
.filter(|p| correct.contains(p))
.count()
>= 12
{
// Found a solution, build the correct output
let translated = translated_iter.map(|point| point + matched_pivot).collect();
return Some((start - matched_pivot, Scanner::new(translated)));
}
}
}
None
}
fn parts_common(input: &mut dyn Read) -> (HashSet<Point3>, Vec<Point3>) {
let mut scanners = read_input(input, parse_input);
let mut points: HashSet<_> = scanners[0].iter().copied().collect();
let mut todo = vec![scanners.remove(0)];
let mut scanners_found = vec![Point3::default()];
while let Some(matched) = todo.pop() {
if scanners.is_empty() {
break;
}
let mut i = 0;
while i < scanners.len() {
if let Some((scanner, result)) = try_overlap(&matched, &scanners[i]) {
scanners.remove(i);
scanners_found.push(scanner);
points.extend(result.iter().copied());
todo.push(result);
} else {
i += 1;
}
}
}
assert!(scanners.is_empty());
(points, scanners_found)
}
pub fn part1(input: &mut dyn Read) -> String {
let (points, _) = parts_common(input);
points.len().to_string()
}
pub fn part2(input: &mut dyn Read) -> String {
let (_, scanners) = parts_common(input);
scanners
.iter()
.flat_map(|&first| {
scanners
.iter()
.map(move |&second| (first - second).manhattan())
})
.max()
.unwrap()
.to_string()
}
pub fn next_permutation<T: Ord>(list: &mut [T]) -> bool {
// Based on: https://en.cppreference.com/w/cpp/algorithm/next_permutation
if list.len() <= 1 {
return false;
}
if let Some((i, val1)) = list
.windows(2)
.enumerate()
.rev()
.find_map(|(i, window)| (window[0] < window[1]).then(|| (i, &window[0])))
{
let it2 = list
.iter()
.enumerate()
.skip(i + 1)
.rev()
.find_map(|(idx, val2)| (val1 < val2).then(|| idx))
.expect("Unreachable, ascending pair exists");
list.swap(i, it2);
list[(i + 1)..].reverse();
true
} else {
list.reverse();
false
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::test_implementation;
const SAMPLE: &[u8] = include_bytes!("samples/19.txt");
#[test]
fn test_next_permutation() {
let mut list = [1, 2, 3];
assert!(next_permutation(&mut list));
assert_eq!(list, [1, 3, 2]);
assert!(next_permutation(&mut list));
assert_eq!(list, [2, 1, 3]);
assert!(next_permutation(&mut list));
assert_eq!(list, [2, 3, 1]);
assert!(next_permutation(&mut list));
assert_eq!(list, [3, 1, 2]);
assert!(next_permutation(&mut list));
assert_eq!(list, [3, 2, 1]);
// Note the negation!
assert!(!next_permutation(&mut list));
assert_eq!(list, [1, 2, 3]);
// 24 is a bit too much to write out, but we can check the number
let mut list2 = [1, 2, 3, 4];
for _ in 1..24 {
assert!(next_permutation(&mut list2));
}
// Should be back to the start
assert!(!next_permutation(&mut list2));
assert_eq!(list2, [1, 2, 3, 4]);
}
#[test]
fn sample_part1() {
test_implementation(part1, SAMPLE, 79);
}
#[test]
fn sample_part2() {
test_implementation(part2, SAMPLE, 3621);
}
}