Files
adventofcode/2022/src/day23.rs

206 lines
5.3 KiB
Rust

use std::collections::hash_map::Entry;
use std::ops::RangeInclusive;
use ahash::AHashMap;
use ahash::AHashSet;
use anyhow::Context;
use anyhow::Result;
use itertools::Itertools;
use nom::bytes::complete::take_until;
use nom::character::complete::newline;
use nom::multi::fold_many1;
use nom::sequence::terminated;
use nom::IResult;
use crate::common::enumerate;
use crate::common::parse_input;
use crate::common::Vec2;
const OPTIONS: [[Vec2; 3]; 4] = [
// North
[Vec2([0, -1]), Vec2([-1, -1]), Vec2([1, -1])],
// South
[Vec2([0, 1]), Vec2([-1, 1]), Vec2([1, 1])],
// West
[Vec2([-1, 0]), Vec2([-1, -1]), Vec2([-1, 1])],
// East
[Vec2([1, 0]), Vec2([1, -1]), Vec2([1, 1])],
];
fn parse_elves(input: &[u8]) -> IResult<&[u8], AHashSet<Vec2>> {
fold_many1(
enumerate(terminated(take_until("\n"), newline)),
AHashSet::new,
|mut elves, (y, line): (usize, &[u8])| {
let y = y as i32;
elves.extend(
line.iter()
.enumerate()
.filter_map(|(x, &val)| (val == b'#').then_some(Vec2([x as i32, y]))),
);
elves
},
)(input)
}
fn determine_bounding_box(
elves: &AHashSet<Vec2>,
) -> Result<(RangeInclusive<i32>, RangeInclusive<i32>)> {
let (x_min, x_max) = elves
.iter()
.map(|&Vec2([x, _])| x)
.minmax()
.into_option()
.context("Could not determine x range")?;
let (y_min, y_max) = elves
.iter()
.map(|&Vec2([_, y])| y)
.minmax()
.into_option()
.context("Could not determine y range")?;
Ok((x_min..=x_max, y_min..=y_max))
}
#[allow(unused)]
fn print(elves: &AHashSet<Vec2>) -> Result<()> {
let (x_bounds, y_bounds) = determine_bounding_box(elves)?;
for y in y_bounds {
for x in x_bounds.clone() {
print!(
"{}",
if elves.contains(&Vec2([x, y])) {
'#'
} else {
'.'
}
);
}
println!();
}
Ok(())
}
pub fn part1(input: &[u8]) -> Result<String> {
let mut elves = parse_input(input, parse_elves)?;
simulate(&mut elves, 10);
let (x_bounds, y_bounds) = determine_bounding_box(&elves)?;
let area = (x_bounds.end() - x_bounds.start() + 1) * (y_bounds.end() - y_bounds.start() + 1);
let free = area - elves.len() as i32;
Ok(free.to_string())
}
fn simulate(elves: &mut AHashSet<Vec2>, max: usize) -> Option<usize> {
let mut todo = Vec::new();
let mut to_return = Vec::new();
let mut origin = AHashMap::new();
for it in 0..max {
// Remove all todos from a previous iteration
todo.clear();
// Find all the elves with at least one neighbour
todo.extend(elves.iter().copied().filter(|&Vec2([x, y])| {
for dx in [-1, 0, 1] {
for dy in [-1, 0, 1] {
if dx == 0 && dy == 0 {
continue;
}
if elves.contains(&Vec2([x + dx, y + dy])) {
return true;
}
}
}
false
}));
for &elf in &todo {
let mut moved = false;
for &deltas in OPTIONS[(it % 4)..].iter().chain(&OPTIONS[..(it % 4)]) {
if deltas
.into_iter()
.all(|delta| !elves.contains(&(elf + delta)))
{
// Observation: any collision will only happen between opposite pairs of elves,
// not three. Otherwise they wouldn't have chosen to move this direction.
// Somewhat messy but it avoids computing the hash more than once per elf
match origin.entry(deltas[0] + elf) {
Entry::Occupied(entry) => {
to_return.push(elf);
to_return.push(entry.remove());
}
Entry::Vacant(entry) => {
entry.insert(elf);
}
};
// We moved, or collided, but we shouldn't look other directions any more
moved = true;
break;
}
}
if !moved {
to_return.push(elf);
}
}
if origin.is_empty() {
return Some(it + 1);
}
// Remove entries we processed
for elf in &todo {
elves.remove(elf);
}
// Add back any entries we ended up not moving
elves.extend(to_return.drain(..));
// Add all the elves in their new positions
elves.extend(origin.drain().map(|(dest, _)| dest));
}
None
}
pub fn part2(input: &[u8]) -> Result<String> {
let mut elves = parse_input(input, parse_elves)?;
let first_non_moved = simulate(&mut elves, usize::MAX).context("Elves didn't stop moving?")?;
Ok(first_non_moved.to_string())
}
#[cfg(test)]
mod tests {
use super::*;
const SAMPLE: &[u8] = include_bytes!("./samples/23.txt");
#[test]
fn sample_part1() {
assert_eq!(part1(SAMPLE).unwrap(), "110");
}
#[test]
fn sample_part2() {
assert_eq!(part2(SAMPLE).unwrap(), "20");
}
}