Files
adventofcode/2021/src/day23.rs
Bert Peters 894524bc81 Implement part 2
Turns out you can incorrectly implement the problem and still get the
right answer for part 1. If you then correct it, it's a lot faster.
2022-01-02 18:28:04 +01:00

440 lines
12 KiB
Rust

use std::cmp::Reverse;
use std::collections::hash_map::Entry;
use std::collections::BinaryHeap;
use std::collections::HashMap;
use std::fmt::Display;
use std::io::Read;
use std::mem::swap;
use crate::common::LineIter;
type Item<const S: usize> = (u32, State<S>);
type Todo<const S: usize> = BinaryHeap<Reverse<Item<S>>>;
type Visited<const S: usize> = HashMap<State<S>, u32>;
#[derive(Debug, PartialEq, Eq, PartialOrd, Ord, Copy, Clone, Hash)]
enum Pod {
A,
B,
C,
D,
}
impl Pod {
pub fn cost(self) -> u32 {
match self {
Pod::A => 1,
Pod::B => 10,
Pod::C => 100,
Pod::D => 1000,
}
}
}
impl TryFrom<char> for Pod {
type Error = &'static str;
fn try_from(c: char) -> Result<Self, Self::Error> {
match c {
'A' => Ok(Pod::A),
'B' => Ok(Pod::B),
'C' => Ok(Pod::C),
'D' => Ok(Pod::D),
_ => Err("Invalid pod"),
}
}
}
#[derive(Debug, PartialEq, Eq, PartialOrd, Ord, Clone, Hash)]
struct State<const S: usize> {
hallway: [Option<Pod>; 11],
rooms: [[Option<Pod>; S]; 4],
}
fn room_hallway_pos(room: usize) -> usize {
room * 2 + 2
}
fn abs_delta(a: usize, b: usize) -> usize {
if a < b {
b - a
} else {
a - b
}
}
impl<const S: usize> State<S> {
const VALID_HALLWAY_POS: [usize; 7] = [0, 1, 3, 5, 7, 9, 10];
pub fn is_done(&self) -> bool {
self == &State {
hallway: Default::default(),
rooms: [
[Some(Pod::A); S],
[Some(Pod::B); S],
[Some(Pod::C); S],
[Some(Pod::D); S],
],
}
}
fn add_to_queue(self, cost: u32, todo: &mut Todo<S>, visited: &mut Visited<S>) {
let entry = visited.entry(self.clone());
if matches!(&entry, Entry::Occupied(entry) if *entry.get() <= cost) {
// Already got a better one
return;
}
// nightly only :'(
// entry.insert(cost);
*entry.or_default() = cost;
todo.push(Reverse((cost + self.estimate(), self)))
}
fn estimate(&self) -> u32 {
// A* estimate. For every entry that is not already "at rest", the cost is the cost
// required to get it to the top of its intended room.
// Cost to enter the hole for all pods that still need to
let enter_estimate: u32 = self
.rooms
.iter()
.enumerate()
.map(|(index, room)| {
let pod = match index {
0 => Pod::A,
1 => Pod::B,
2 => Pod::C,
3 => Pod::D,
_ => unreachable!(),
};
room.iter()
.enumerate()
.rev()
.skip_while(|&(_, &entry)| entry == Some(pod))
.map(|(index, _)| index as u32 + 1)
.sum::<u32>()
* pod.cost()
})
.sum();
// Cost for all of the hallway to move to above their intended rooms
let hallway_estimate: u32 = self
.hallway
.iter()
.enumerate()
.filter_map(|(pos, &pod)| {
let pod = pod?;
let destination_pos = room_hallway_pos(pod as usize);
Some(abs_delta(pos, destination_pos) as u32 * pod.cost())
})
.sum();
// Cost to move out of the room and above the correct rooms
let rooms_estimate: u32 = self
.rooms
.iter()
.enumerate()
.map(|(room_index, room)| {
let hallway_pos = room_hallway_pos(room_index);
room.iter()
.enumerate()
.rev()
.skip_while(|&(_, &entry)| {
entry.map(|pod| pod as usize == room_index).unwrap_or(false)
})
.filter_map(|(room_pos, &pod)| {
let pod = pod?;
let destination_pos = room_hallway_pos(pod as usize);
let steps = 1 + room_pos + abs_delta(hallway_pos, destination_pos).max(2);
Some(steps as u32 * pod.cost())
})
.sum::<u32>()
})
.sum();
enter_estimate + hallway_estimate + rooms_estimate
}
pub fn generate_next(&self, cost: u32, todo: &mut Todo<S>, visited: &mut Visited<S>) {
self.room_to_hallway(cost, todo, visited);
self.hallway_to_room(cost, todo, visited);
}
fn room_to_hallway(&self, cost: u32, todo: &mut Todo<S>, visited: &mut Visited<S>) {
for (index, room) in self.rooms.iter().enumerate() {
// Check if we even want to move anything out of this room
if room
.iter()
.all(|entry| entry.map(|pod| pod as usize == index).unwrap_or(true))
{
continue;
}
let (pos, pod) = room
.iter()
.enumerate()
.find_map(|(pos, entry)| entry.map(|pod| (pos, pod)))
.unwrap(); // Safe unwrap, we know it exists from above.
let base_cost = 1 + pos;
let hallway_pos = room_hallway_pos(index);
let mut queue_new = |new_pos, new_cost| {
let mut new_state = self.clone();
swap(
&mut new_state.hallway[new_pos],
&mut new_state.rooms[index][pos],
);
new_state.add_to_queue(new_cost + cost, todo, visited)
};
// Check positions to the left
for new_pos in (0..hallway_pos).rev() {
if self.hallway[new_pos].is_some() {
// Hit an occupied room
break;
}
if !Self::VALID_HALLWAY_POS.contains(&new_pos) {
// Not allowed to stop here
continue;
}
let new_cost = (base_cost + hallway_pos - new_pos) as u32 * pod.cost();
queue_new(new_pos, new_cost);
}
// And to the right
for new_pos in hallway_pos..self.hallway.len() {
if self.hallway[new_pos].is_some() {
// Hit an occupied room
break;
}
if !Self::VALID_HALLWAY_POS.contains(&new_pos) {
// Not allowed to stop here
continue;
}
let new_cost = (base_cost + new_pos - hallway_pos) as u32 * pod.cost();
queue_new(new_pos, new_cost);
}
}
}
fn hallway_to_room(&self, cost: u32, todo: &mut Todo<S>, visited: &mut Visited<S>) {
for (pos, pod) in self
.hallway
.iter()
.enumerate()
.filter_map(|(pos, pod)| pod.map(|pod| (pos, pod)))
{
let room = pod as usize;
let new_hallway_pos = room_hallway_pos(room);
// Check if the path is free
let in_between = if new_hallway_pos < pos {
&self.hallway[(new_hallway_pos + 1)..pos]
} else {
&self.hallway[(pos + 1)..new_hallway_pos]
};
if in_between.iter().any(Option::is_some) {
// Something's in the way
continue;
}
// Check if we can move into the room
if self.rooms[room]
.iter()
.copied()
.flatten()
.any(|other| other != pod)
{
// Scared of other pods
continue;
}
let room_pos = if let Some(pos) = self.rooms[room].iter().rposition(Option::is_none) {
pos
} else {
continue;
};
let new_cost = (abs_delta(pos, new_hallway_pos) + room_pos + 1) as u32 * pod.cost();
let mut new_state = self.clone();
swap(
&mut new_state.hallway[pos],
&mut new_state.rooms[room][room_pos],
);
new_state.add_to_queue(cost + new_cost, todo, visited);
}
}
pub fn solve(&self) -> u32 {
let mut todo = Todo::new();
let mut visited = HashMap::new();
visited.insert(self.clone(), 0);
todo.push(Reverse((self.estimate(), self.clone())));
while let Some(Reverse((_, state))) = todo.pop() {
let cost = *visited.get(&state).unwrap_or(&0);
if state.is_done() {
return cost;
}
state.generate_next(cost, &mut todo, &mut visited);
}
panic!("No route found!")
}
}
impl<const S: usize> Display for State<S> {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
let helper = |opt_pod| match opt_pod {
Some(Pod::A) => 'A',
Some(Pod::B) => 'B',
Some(Pod::C) => 'C',
Some(Pod::D) => 'D',
None => '.',
};
writeln!(f, "#############")?;
write!(f, "#")?;
for entry in self.hallway {
write!(f, "{}", helper(entry))?;
}
writeln!(f, "#")?;
for i in 0..S {
writeln!(
f,
" #{}#{}#{}#{}#",
helper(self.rooms[0][i]),
helper(self.rooms[1][i]),
helper(self.rooms[2][i]),
helper(self.rooms[3][i])
)?;
}
write!(f, " #########")
}
}
fn read_input(input: &mut dyn Read) -> State<2> {
let mut reader = LineIter::new(input);
let mut state = State {
hallway: Default::default(),
rooms: Default::default(),
};
let _ = reader.next();
let _ = reader.next();
let mut helper = |idx: usize| {
reader
.next()
.unwrap()
.chars()
.filter_map(|c| Pod::try_from(c).ok())
.zip(&mut state.rooms)
.for_each(|(pod, room)| room[idx] = Some(pod))
};
helper(0);
helper(1);
state
}
pub fn part1(input: &mut dyn Read) -> String {
let state = read_input(input);
state.solve().to_string()
}
pub fn part2(input: &mut dyn Read) -> String {
let state2 = read_input(input);
let state4 = State {
hallway: Default::default(),
rooms: [
[
state2.rooms[0][0],
Some(Pod::D),
Some(Pod::D),
state2.rooms[0][1],
],
[
state2.rooms[1][0],
Some(Pod::C),
Some(Pod::B),
state2.rooms[1][1],
],
[
state2.rooms[2][0],
Some(Pod::B),
Some(Pod::A),
state2.rooms[2][1],
],
[
state2.rooms[3][0],
Some(Pod::A),
Some(Pod::C),
state2.rooms[3][1],
],
],
};
state4.solve().to_string()
}
#[cfg(test)]
mod tests {
use super::*;
use crate::test_implementation;
const SAMPLE: &[u8] = include_bytes!("samples/23.txt");
#[test]
fn test_is_done() {
let state = State {
hallway: Default::default(),
rooms: [
[Some(Pod::A); 2],
[Some(Pod::B); 2],
[Some(Pod::C); 2],
[Some(Pod::D); 2],
],
};
assert!(state.is_done());
}
#[test]
fn sample_part1() {
test_implementation(part1, SAMPLE, 12521);
}
#[test]
fn sample_part2() {
test_implementation(part2, SAMPLE, 44169);
}
}