#include #include #include "visualisations.hpp" #include "DummyLayerVisualisation.hpp" #include "MultiImageVisualisation.hpp" #include "FlatLayerVisualisation.hpp" #include "Range.hpp" #include "ActivityAnimation.hpp" using namespace fmri; using namespace std; // Maximum number of interactions shown static constexpr size_t INTERACTION_LIMIT = 10000; typedef vector>> EntryList; /** * Normalizer for node positions. * * Since not every neuron in a layer may get a node in the visualisation, * this function maps those neurons back to a node number that does. * * Usage: node / getNodeNormalizer(layer). * * @param layer Layer to compute normalization for * @return Number to divide node numbers by. */ static inline int getNodeNormalizer(const LayerData& layer) { const auto& shape = layer.shape(); switch(shape.size()) { case 2: return 1; case 4: return shape[2] * shape[3]; default: CHECK(false) << "Unsupported shape " << shape.size() << endl; exit(EINVAL); } } /** * Deduplicate interaction entries. * * For duplicate interactions, the interaction strengths are summed. * * @param entries * @return the deduplicated entries. */ static EntryList deduplicate(const EntryList& entries) { map, float> combiner; for (auto entry : entries) { combiner[entry.second] += entry.first; } EntryList result; transform(combiner.begin(), combiner.end(), back_inserter(result), [](const auto& item) { return make_pair(item.second, item.first); }); return result; } fmri::LayerVisualisation *fmri::getVisualisationForLayer(const fmri::LayerData &layer) { switch (layer.shape().size()) { case 2: return new FlatLayerVisualisation(layer, FlatLayerVisualisation::Ordering::SQUARE); case 4: return new MultiImageVisualisation(layer); default: return new DummyLayerVisualisation(); } } static Animation *getFullyConnectedAnimation(const fmri::LayerData &prevState, const fmri::LayerInfo &layer, const vector &prevPositions, const vector &curPositions) { LOG(INFO) << "Computing top interactions for " << layer.name() << endl; auto data = prevState.data(); CHECK_GE(layer.parameters().size(), 1) << "Layer should have correct parameters"; const auto shape = layer.parameters()[0]->shape(); auto weights = layer.parameters()[0]->cpu_data(); const auto numEntries = accumulate(shape.begin(), shape.end(), static_cast(1), multiplies()); vector interactions(numEntries); for (auto i : Range(numEntries)) { interactions[i] = weights[i] * data[i % shape[0]]; } const auto desiredSize = min(INTERACTION_LIMIT, numEntries); auto idx = arg_nth_element(interactions.begin(), interactions.begin() + desiredSize, interactions.end(), [](auto a, auto b) { return abs(a) > abs(b); }); EntryList result; result.reserve(desiredSize); const auto normalizer = getNodeNormalizer(prevState); for (auto i : idx) { result.emplace_back(interactions[i], make_pair(i / shape[0] / normalizer, i % shape[0])); } return new ActivityAnimation(result, prevPositions.data(), curPositions.data(), -10); } static Animation *getDropOutAnimation(const fmri::LayerData &prevState, const fmri::LayerData &curState, const vector &prevPositions, const vector &curPositions) { const auto sourceNormalize = getNodeNormalizer(prevState); const auto sinkNormalize = getNodeNormalizer(curState); auto data = curState.data(); EntryList results; results.reserve(curState.numEntries()); for (auto i : Range(curState.numEntries())) { if (data[i] != 0) { results.emplace_back(data[i], make_pair(i / sourceNormalize, i / sinkNormalize)); } } results = deduplicate(results); return new ActivityAnimation(results, prevPositions.data(), curPositions.data(), -10); } static Animation *getReLUAnimation(const fmri::LayerData &prevState, const fmri::LayerData &curState, const vector &prevPositions, const vector &curPositions) { CHECK_EQ(curState.numEntries(), prevState.numEntries()) << "Layers should be of same size!"; const auto prevData = prevState.data(), curData = curState.data(); const auto sourceNormalize = getNodeNormalizer(prevState); const auto sinkNormalize = getNodeNormalizer(curState); EntryList results; for (auto i : Range(curState.numEntries())) { results.emplace_back(curData[i] - prevData[i], make_pair(i / sourceNormalize, i / sinkNormalize)); } results = deduplicate(results); return new ActivityAnimation(results, prevPositions.data(), curPositions.data(), -10); } Animation * fmri::getActivityAnimation(const fmri::LayerData &prevState, const fmri::LayerData &curState, const fmri::LayerInfo &layer, const vector &prevPositions, const vector &curPositions) { if (prevPositions.empty() || curPositions.empty()) { // Not all positions known, no visualisation possible. return nullptr; } switch (layer.type()) { case LayerInfo::Type::InnerProduct: return getFullyConnectedAnimation(prevState, layer, prevPositions, curPositions); case LayerInfo::Type::DropOut: return getDropOutAnimation(prevState, curState, prevPositions, curPositions); case LayerInfo::Type::ReLU: return getReLUAnimation(prevState, curState, prevPositions, curPositions); default: return nullptr; } }