346 lines
4.7 KiB
Plaintext
346 lines
4.7 KiB
Plaintext
name: "VGG_ILSVRC_16_layers"
|
|
layers {
|
|
bottom: "data"
|
|
top: "conv1_1"
|
|
name: "conv1_1"
|
|
type: CONVOLUTION
|
|
convolution_param {
|
|
num_output: 64
|
|
pad: 1
|
|
kernel_size: 3
|
|
}
|
|
}
|
|
layers {
|
|
bottom: "conv1_1"
|
|
top: "relu1_1"
|
|
name: "relu1_1"
|
|
type: RELU
|
|
}
|
|
layers {
|
|
bottom: "relu1_1"
|
|
top: "conv1_2"
|
|
name: "conv1_2"
|
|
type: CONVOLUTION
|
|
convolution_param {
|
|
num_output: 64
|
|
pad: 1
|
|
kernel_size: 3
|
|
}
|
|
}
|
|
layers {
|
|
bottom: "conv1_2"
|
|
top: "relu1_2"
|
|
name: "relu1_2"
|
|
type: RELU
|
|
}
|
|
layers {
|
|
bottom: "relu1_2"
|
|
top: "pool1"
|
|
name: "pool1"
|
|
type: POOLING
|
|
pooling_param {
|
|
pool: MAX
|
|
kernel_size: 2
|
|
stride: 2
|
|
}
|
|
}
|
|
layers {
|
|
bottom: "pool1"
|
|
top: "conv2_1"
|
|
name: "conv2_1"
|
|
type: CONVOLUTION
|
|
convolution_param {
|
|
num_output: 128
|
|
pad: 1
|
|
kernel_size: 3
|
|
}
|
|
}
|
|
layers {
|
|
bottom: "conv2_1"
|
|
top: "relu2_1"
|
|
name: "relu2_1"
|
|
type: RELU
|
|
}
|
|
layers {
|
|
bottom: "relu2_1"
|
|
top: "conv2_2"
|
|
name: "conv2_2"
|
|
type: CONVOLUTION
|
|
convolution_param {
|
|
num_output: 128
|
|
pad: 1
|
|
kernel_size: 3
|
|
}
|
|
}
|
|
layers {
|
|
bottom: "conv2_2"
|
|
top: "relu2_2"
|
|
name: "relu2_2"
|
|
type: RELU
|
|
}
|
|
layers {
|
|
bottom: "relu2_2"
|
|
top: "pool2"
|
|
name: "pool2"
|
|
type: POOLING
|
|
pooling_param {
|
|
pool: MAX
|
|
kernel_size: 2
|
|
stride: 2
|
|
}
|
|
}
|
|
layers {
|
|
bottom: "pool2"
|
|
top: "conv3_1"
|
|
name: "conv3_1"
|
|
type: CONVOLUTION
|
|
convolution_param {
|
|
num_output: 256
|
|
pad: 1
|
|
kernel_size: 3
|
|
}
|
|
}
|
|
layers {
|
|
bottom: "conv3_1"
|
|
top: "relu3_1"
|
|
name: "relu3_1"
|
|
type: RELU
|
|
}
|
|
layers {
|
|
bottom: "relu3_1"
|
|
top: "conv3_2"
|
|
name: "conv3_2"
|
|
type: CONVOLUTION
|
|
convolution_param {
|
|
num_output: 256
|
|
pad: 1
|
|
kernel_size: 3
|
|
}
|
|
}
|
|
layers {
|
|
bottom: "conv3_2"
|
|
top: "relu3_2"
|
|
name: "relu3_2"
|
|
type: RELU
|
|
}
|
|
layers {
|
|
bottom: "relu3_2"
|
|
top: "conv3_3"
|
|
name: "conv3_3"
|
|
type: CONVOLUTION
|
|
convolution_param {
|
|
num_output: 256
|
|
pad: 1
|
|
kernel_size: 3
|
|
}
|
|
}
|
|
layers {
|
|
bottom: "conv3_3"
|
|
top: "relu3_3"
|
|
name: "relu3_3"
|
|
type: RELU
|
|
}
|
|
layers {
|
|
bottom: "relu3_3"
|
|
top: "pool3"
|
|
name: "pool3"
|
|
type: POOLING
|
|
pooling_param {
|
|
pool: MAX
|
|
kernel_size: 2
|
|
stride: 2
|
|
}
|
|
}
|
|
layers {
|
|
bottom: "pool3"
|
|
top: "conv4_1"
|
|
name: "conv4_1"
|
|
type: CONVOLUTION
|
|
convolution_param {
|
|
num_output: 512
|
|
pad: 1
|
|
kernel_size: 3
|
|
}
|
|
}
|
|
layers {
|
|
bottom: "conv4_1"
|
|
top: "relu4_1"
|
|
name: "relu4_1"
|
|
type: RELU
|
|
}
|
|
layers {
|
|
bottom: "relu4_1"
|
|
top: "conv4_2"
|
|
name: "conv4_2"
|
|
type: CONVOLUTION
|
|
convolution_param {
|
|
num_output: 512
|
|
pad: 1
|
|
kernel_size: 3
|
|
}
|
|
}
|
|
layers {
|
|
bottom: "conv4_2"
|
|
top: "relu4_2"
|
|
name: "relu4_2"
|
|
type: RELU
|
|
}
|
|
layers {
|
|
bottom: "relu4_2"
|
|
top: "conv4_3"
|
|
name: "conv4_3"
|
|
type: CONVOLUTION
|
|
convolution_param {
|
|
num_output: 512
|
|
pad: 1
|
|
kernel_size: 3
|
|
}
|
|
}
|
|
layers {
|
|
bottom: "conv4_3"
|
|
top: "relu4_3"
|
|
name: "relu4_3"
|
|
type: RELU
|
|
}
|
|
layers {
|
|
bottom: "relu4_3"
|
|
top: "pool4"
|
|
name: "pool4"
|
|
type: POOLING
|
|
pooling_param {
|
|
pool: MAX
|
|
kernel_size: 2
|
|
stride: 2
|
|
}
|
|
}
|
|
layers {
|
|
bottom: "pool4"
|
|
top: "conv5_1"
|
|
name: "conv5_1"
|
|
type: CONVOLUTION
|
|
convolution_param {
|
|
num_output: 512
|
|
pad: 1
|
|
kernel_size: 3
|
|
}
|
|
}
|
|
layers {
|
|
bottom: "conv5_1"
|
|
top: "relu5_1"
|
|
name: "relu5_1"
|
|
type: RELU
|
|
}
|
|
layers {
|
|
bottom: "relu5_1"
|
|
top: "conv5_2"
|
|
name: "conv5_2"
|
|
type: CONVOLUTION
|
|
convolution_param {
|
|
num_output: 512
|
|
pad: 1
|
|
kernel_size: 3
|
|
}
|
|
}
|
|
layers {
|
|
bottom: "conv5_2"
|
|
top: "relu5_2"
|
|
name: "relu5_2"
|
|
type: RELU
|
|
}
|
|
layers {
|
|
bottom: "relu5_2"
|
|
top: "conv5_3"
|
|
name: "conv5_3"
|
|
type: CONVOLUTION
|
|
convolution_param {
|
|
num_output: 512
|
|
pad: 1
|
|
kernel_size: 3
|
|
}
|
|
}
|
|
layers {
|
|
bottom: "conv5_3"
|
|
top: "relu5_3"
|
|
name: "relu5_3"
|
|
type: RELU
|
|
}
|
|
layers {
|
|
bottom: "relu5_3"
|
|
top: "pool5"
|
|
name: "pool5"
|
|
type: POOLING
|
|
pooling_param {
|
|
pool: MAX
|
|
kernel_size: 2
|
|
stride: 2
|
|
}
|
|
}
|
|
layers {
|
|
bottom: "pool5"
|
|
top: "fc6"
|
|
name: "fc6"
|
|
type: INNER_PRODUCT
|
|
inner_product_param {
|
|
num_output: 4096
|
|
}
|
|
}
|
|
layers {
|
|
bottom: "fc6"
|
|
top: "relu6"
|
|
name: "relu6"
|
|
type: RELU
|
|
}
|
|
layers {
|
|
bottom: "relu6"
|
|
top: "drop6"
|
|
name: "drop6"
|
|
type: DROPOUT
|
|
dropout_param {
|
|
dropout_ratio: 0.5
|
|
}
|
|
}
|
|
layers {
|
|
bottom: "drop6"
|
|
top: "fc7"
|
|
name: "fc7"
|
|
type: INNER_PRODUCT
|
|
inner_product_param {
|
|
num_output: 4096
|
|
}
|
|
}
|
|
layers {
|
|
bottom: "fc7"
|
|
top: "relu7"
|
|
name: "relu7"
|
|
type: RELU
|
|
}
|
|
layers {
|
|
bottom: "relu7"
|
|
top: "drop7"
|
|
name: "drop7"
|
|
type: DROPOUT
|
|
dropout_param {
|
|
dropout_ratio: 0.5
|
|
}
|
|
}
|
|
layers {
|
|
bottom: "drop7"
|
|
top: "fc8"
|
|
name: "fc8"
|
|
type: INNER_PRODUCT
|
|
inner_product_param {
|
|
num_output: 1000
|
|
}
|
|
}
|
|
layers {
|
|
bottom: "fc8"
|
|
top: "prob"
|
|
name: "prob"
|
|
type: SOFTMAX
|
|
}
|
|
input: "data"
|
|
input_dim: 10
|
|
input_dim: 3
|
|
input_dim: 224
|
|
input_dim: 224
|