This repository has been archived on 2019-09-17. You can view files and clone it, but cannot push or open issues or pull requests.
Files
research-project/src/Simulator.cpp
Bert Peters 1945f3c361 Restructure include files.
This way main.o is much faster to compile, leaving Simulator.o the only
file that really takes time.
2017-10-13 16:09:00 +02:00

164 lines
4.2 KiB
C++

#include <cassert>
#include <iostream>
#include <vector>
#include "Simulator.hpp"
#include <caffe/caffe.hpp>
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>
using namespace caffe;
using namespace std;
using namespace fmri;
Simulator::Simulator(const string& model_file, const string& weights_file, const string& means_file) :
net(new Net<DType>(model_file, TEST))
{
net->CopyTrainedLayersFrom(weights_file);
Blob<DType>* input_layer = net->input_blobs()[0];
input_geometry = cv::Size(input_layer->width(), input_layer->height());
num_channels = input_layer->channels();
input_layer->Reshape(1, num_channels,
input_geometry.height, input_geometry.width);
/* Forward dimension change to all layers. */
net->Reshape();
if (means_file != "") {
means = processMeans(means_file);
}
}
vector<LayerData> Simulator::simulate(const string& image_file)
{
typedef LayerData::Type LType;
cv::Mat im = cv::imread(image_file, -1);
assert(!im.empty());
auto input = preprocess(im);
auto channels = getWrappedInputLayer();
cv::split(input, channels);
net->Forward();
vector<LayerData> result;
Blob<DType>* input_layer = net->input_blobs()[0];
const auto& names = net->layer_names();
const auto& results = net->top_vecs();
const auto& layers = net->layers();
for (unsigned int i = 0; i < names.size(); ++i) {
CHECK_EQ(results[i].size(), 1) << "Multiple outputs per layer are not supported!" << endl;
const auto blob = results[i][0];
result.emplace_back(names[i], blob->shape(), blob->cpu_data(), LayerData::typeFromString(layers[i]->type()));
}
return result;
}
vector<cv::Mat> Simulator::getWrappedInputLayer()
{
vector<cv::Mat> channels;
Blob<DType>* input_layer = net->input_blobs()[0];
const int width = input_geometry.width;
const int height = input_geometry.height;
DType* input_data = input_layer->mutable_cpu_data();
for (unsigned int i = 0; i < num_channels; i++) {
channels.emplace_back(height, width, CV_32FC1, input_data);
input_data += width * height;
}
return channels;
}
static cv::Mat fix_channels(const int num_channels, cv::Mat original) {
cv::Mat converted;
if (num_channels == 1 && original.channels() == 3) {
cv::cvtColor(original, converted, cv::COLOR_BGR2GRAY);
} else if (num_channels == 1 && original.channels() == 4) {
cv::cvtColor(original, converted, cv::COLOR_BGRA2GRAY);
} else if (num_channels == 3 && original.channels() == 1) {
cv::cvtColor(original, converted, cv::COLOR_GRAY2BGR);
} else if (num_channels == 3 && original.channels() == 4) {
cv::cvtColor(original, converted, cv::COLOR_BGRA2BGR);
} else {
CHECK(num_channels == original.channels()) << "Cannot convert between channel types. ";
return original;
}
return converted;
}
static cv::Mat resize(const cv::Size& targetSize, cv::Mat original)
{
if (targetSize != original.size()) {
cv::Mat resized;
cv::resize(original, resized, targetSize);
return resized;
}
return original;
}
cv::Mat Simulator::preprocess(cv::Mat original) const
{
auto converted = fix_channels(num_channels, original);
auto resized = resize(input_geometry, converted);
cv::Mat sample_float;
resized.convertTo(sample_float, num_channels == 3 ? CV_32FC3 : CV_32FC1);
if (means.empty()) {
return sample_float;
}
cv::Mat normalized;
cv::subtract(sample_float, means, normalized);
return normalized;
}
cv::Mat Simulator::processMeans(const string &means_file) const
{
BlobProto proto;
ReadProtoFromBinaryFileOrDie(means_file, &proto);
Blob<DType> mean_blob;
mean_blob.FromProto(proto);
assert(mean_blob.channels() == num_channels);
vector<cv::Mat> channels;
float* data = mean_blob.mutable_cpu_data();
for (unsigned int i = 0; i < num_channels; ++i) {
channels.emplace_back(mean_blob.height(), mean_blob.width(), CV_32FC1, data);
data += mean_blob.height() * mean_blob.width();
}
cv::Mat mean;
cv::merge(channels, mean);
return cv::Mat(input_geometry, mean.type(), cv::mean(mean));
}
Simulator::~Simulator()
{
// Empty but defined constructor.
}