Files
adventofcode/2022/src/day22.rs

361 lines
11 KiB
Rust

use std::mem;
use anyhow::Context;
use anyhow::Result;
use nom::branch::alt;
use nom::bytes::complete::tag;
use nom::bytes::complete::take_until;
use nom::character::complete::newline;
use nom::combinator::map;
use nom::combinator::value;
use nom::multi::many1;
use nom::sequence::separated_pair;
use nom::sequence::terminated;
use nom::IResult;
use crate::common::parse_input;
// This describes the transitions between the different squares.
//
// For every direction, write down which direction you end up going, in which square, and
// whether you should flip the axis.
//
// The squares are laid out as follows:
//
// #01
// #2#
// 34#
// 5##
//
// Entries are specified right, down, left, up.
#[allow(dead_code)]
const TRANSITIONS: [[(Direction, usize, bool); 4]; 6] = [
// Square 0
[
(Direction::Right, 1, false),
(Direction::Down, 2, false),
(Direction::Right, 3, true),
(Direction::Right, 5, false),
],
// Square 1
[
(Direction::Left, 4, true),
(Direction::Left, 2, false),
(Direction::Left, 0, false),
(Direction::Up, 5, false),
],
// Square 2
[
(Direction::Up, 1, false),
(Direction::Down, 4, false),
(Direction::Down, 3, false),
(Direction::Up, 0, false),
],
// Square 3
[
(Direction::Right, 4, false),
(Direction::Down, 5, false),
(Direction::Right, 0, true),
(Direction::Right, 2, false),
],
// Square 4
[
(Direction::Left, 1, true),
(Direction::Left, 5, false),
(Direction::Left, 3, false),
(Direction::Up, 2, false),
],
// Square 5
[
(Direction::Up, 4, false),
(Direction::Down, 1, false),
(Direction::Down, 0, false),
(Direction::Up, 3, false),
],
];
#[derive(Clone, Copy, Debug)]
enum Step {
Forward(u32),
Left,
Right,
}
#[derive(Clone, Copy, Debug)]
enum Direction {
Up = 3,
Down = 1,
Left = 2,
Right = 0,
}
type Map<'a> = Vec<&'a [u8]>;
impl Direction {
fn turn_left(self) -> Self {
match self {
Direction::Up => Direction::Left,
Direction::Down => Direction::Right,
Direction::Left => Direction::Down,
Direction::Right => Direction::Up,
}
}
fn turn_right(self) -> Self {
match self {
Direction::Up => Direction::Right,
Direction::Down => Direction::Left,
Direction::Left => Direction::Up,
Direction::Right => Direction::Down,
}
}
}
fn parse_map(input: &[u8]) -> IResult<&[u8], (Map, Vec<Step>)> {
separated_pair(
map(take_until("\n\n"), |map: &[u8]| {
map.split(|&b| b == b'\n').collect()
}),
tag("\n\n"),
terminated(
many1(alt((
map(nom::character::complete::u32, Step::Forward),
value(Step::Right, tag("R")),
value(Step::Left, tag("L")),
))),
newline,
),
)(input)
}
fn find_starting_x(top_row: &[u8]) -> Result<usize> {
top_row
.iter()
.position(|&b| b == b'.')
.context("Could not find starting position")
}
pub fn part1(input: &[u8]) -> Result<String> {
let (map, steps) = parse_input(input, parse_map)?;
let mut dir = Direction::Right;
let mut y = 0;
let mut x = find_starting_x(&map[y])?;
for step in steps {
match step {
Step::Forward(amount) => match dir {
Direction::Up => {
for _ in 0..amount {
if y == 0 || map[y - 1].get(x).map_or(true, |&b| b == b' ') {
let new_y = map
.iter()
.rposition(|line| {
line.get(x).map_or(false, |&b| b == b'.' || b == b'#')
})
.unwrap();
if map[new_y][x] == b'#' {
break;
} else {
y = new_y;
}
} else if map[y - 1][x] == b'#' {
break;
} else {
y -= 1;
}
}
}
Direction::Down => {
for _ in 0..amount {
if y + 1 >= map.len() || map[y + 1].get(x).map_or(true, |&b| b == b' ') {
let new_y = map
.iter()
.position(|line| {
line.get(x).map_or(false, |&b| b == b'.' || b == b'#')
})
.unwrap();
if map[new_y][x] == b'#' {
break;
} else {
y = new_y;
}
} else if map[y + 1][x] == b'#' {
break;
} else {
y += 1;
}
}
}
Direction::Left => {
for _ in 0..amount {
if x == 0 || map[y][x - 1] == b' ' {
let new_x = map[y]
.iter()
.rposition(|&b| b == b'.' || b == b'#')
.unwrap();
if map[y][new_x] == b'.' {
x = new_x;
} else {
break;
}
} else if map[y][x - 1] == b'#' {
break;
} else {
x -= 1;
}
}
}
Direction::Right => {
for _ in 0..amount {
if x + 1 >= map[y].len() || map[y][x + 1] == b' ' {
let new_x =
map[y].iter().position(|&b| b == b'.' || b == b'#').unwrap();
if map[y][new_x] == b'.' {
x = new_x;
} else {
break;
}
} else if map[y][x + 1] == b'#' {
break;
} else {
x += 1;
}
}
}
},
Step::Left => dir = dir.turn_left(),
Step::Right => dir = dir.turn_right(),
}
}
Ok((1000 * (y + 1) + 4 * (x + 1) + dir as usize).to_string())
}
fn side_length_of(map: &[&[u8]]) -> usize {
let taken_tiles = map
.iter()
.flat_map(|r| r.iter())
.filter(|c| !c.is_ascii_whitespace())
.count();
// Future Bert: this needs to be an integer square root.
((taken_tiles / 6) as f64).sqrt() as usize
}
fn break_squares<'a>(map: &[&'a [u8]], side_length: usize) -> [(Map<'a>, usize, usize); 6] {
let mut result: [(Map<'a>, usize, usize); 6] = Default::default();
let mut row_holder = [(); 4].map(|_| Map::new());
let mut index = 0;
for (y, block_row) in map.chunks_exact(side_length).enumerate() {
for row in block_row {
for (i, segment) in row.chunks_exact(side_length).enumerate() {
if segment[0] != b' ' {
row_holder[i].push(segment);
}
}
}
for (x, potential_side) in row_holder.iter_mut().enumerate() {
if !potential_side.is_empty() {
mem::swap(potential_side, &mut result[index].0);
result[index].1 = x;
result[index].2 = y;
index += 1;
}
}
}
result
}
pub fn part2(input: &[u8]) -> Result<String> {
let (map, steps) = parse_input(input, parse_map)?;
let side_length = side_length_of(&map);
let squares = break_squares(&map, side_length);
let mut current_square = 0;
let mut y = 0;
let mut x = find_starting_x(&squares[current_square].0[y])?;
let mut dir = Direction::Right;
for step in steps {
match step {
Step::Left => dir = dir.turn_left(),
Step::Right => dir = dir.turn_right(),
Step::Forward(amount) => anyhow::bail!("not implemented"),
}
}
let real_x = x + squares[current_square].1 * side_length;
let real_y = y + squares[current_square].2 * side_length;
Ok((1000 * (real_y + 1) + 4 * (real_x + 1) + dir as usize).to_string())
}
#[cfg(test)]
mod tests {
use super::*;
const SAMPLE: &[u8] = include_bytes!("samples/22.txt");
#[test]
fn sample_part1() {
assert_eq!(part1(SAMPLE).unwrap(), "6032");
}
#[test]
fn test_side_length() {
let (map, _) = parse_input(SAMPLE, parse_map).unwrap();
assert_eq!(side_length_of(&map), 4);
}
#[test]
fn test_break_squares() {
let (map, _) = parse_input(SAMPLE, parse_map).unwrap();
let side_length = side_length_of(&map);
let squares = break_squares(&map, side_length);
assert_eq!(squares[0].1, 2);
assert_eq!(squares[0].2, 0);
assert_eq!(squares[5].1, 3);
assert_eq!(squares[5].2, 2);
for square in squares {
assert_eq!(square.0.len(), side_length);
for row in square.0 {
assert_eq!(row.len(), side_length);
}
}
}
#[test]
fn test_sanity_transitions() {
for (cur_face, &face) in TRANSITIONS.iter().enumerate() {
for (dir, (arrive_dir, arrive_face, invert)) in face.into_iter().enumerate() {
let inverse_dir = (arrive_dir as usize + 2) % 4;
let (back_dir, back_face, back_invert) = TRANSITIONS[arrive_face][inverse_dir];
assert_eq!(
invert, back_invert,
"Reciprocal invert failed: face {cur_face} dir {dir} to face {arrive_face} arrives as {arrive_dir:?}"
);
assert_eq!(back_face, cur_face, "Reciprocal transition failed: face {cur_face} dir {dir} arrives at {arrive_face} but returns at {back_face}");
let correct_back_dir = (dir + 2) % 4;
assert_eq!(back_dir as usize, correct_back_dir, "Reciprocal direction failed: face {cur_face} dir {dir} did not arrive the opposite direction from {arrive_face}");
}
}
}
}