Merge hash maps in graph structures

This saves quite a few hash-map lookups which improves performance by
about 25%.
This commit is contained in:
2021-05-24 12:57:21 +02:00
parent cca3cf7827
commit 39b493a871

View File

@@ -1,3 +1,4 @@
use std::array::IntoIter;
use std::collections::HashMap;
use std::collections::HashSet;
use std::hash::Hash;
@@ -18,17 +19,24 @@ type Order = usize;
/// visibly changed.
///
/// [paper]: https://whileydave.com/publications/pk07_jea/
#[derive(Clone, Default, Debug)]
#[derive(Default, Debug)]
pub struct DiGraph<V>
where
V: Eq + Hash + Copy,
{
in_edges: HashMap<V, HashSet<V>>,
out_edges: HashMap<V, HashSet<V>>,
nodes: HashMap<V, Node<V>>,
/// Next topological sort order
next_ord: Order,
/// Topological sort order. Order is not guaranteed to be contiguous
ord: HashMap<V, Order>,
}
#[derive(Debug)]
struct Node<V>
where
V: Eq + Hash + Clone,
{
in_edges: HashSet<V>,
out_edges: HashSet<V>,
ord: Order,
}
impl<V> DiGraph<V>
@@ -44,29 +52,36 @@ where
/// New nodes are appended to the end of the topological order when added.
fn add_node(&mut self, n: V) -> (&mut HashSet<V>, &mut HashSet<V>, Order) {
let next_ord = &mut self.next_ord;
let in_edges = self.in_edges.entry(n).or_default();
let out_edges = self.out_edges.entry(n).or_default();
let order = *self.ord.entry(n).or_insert_with(|| {
let node = self.nodes.entry(n).or_insert_with(|| {
let order = *next_ord;
*next_ord = next_ord.checked_add(1).expect("Topological order overflow");
order
Node {
ord: order,
in_edges: Default::default(),
out_edges: Default::default(),
}
});
(in_edges, out_edges, order)
(&mut node.in_edges, &mut node.out_edges, node.ord)
}
pub(crate) fn remove_node(&mut self, n: V) -> bool {
match self.out_edges.remove(&n) {
match self.nodes.remove(&n) {
None => false,
Some(out_edges) => {
for other in out_edges {
self.in_edges.get_mut(&other).unwrap().remove(&n);
}
Some(Node {
out_edges,
in_edges,
..
}) => {
out_edges.into_iter().for_each(|m| {
self.nodes.get_mut(&m).unwrap().in_edges.remove(&n);
});
for other in self.in_edges.remove(&n).unwrap() {
self.out_edges.get_mut(&other).unwrap().remove(&n);
}
in_edges.into_iter().for_each(|m| {
self.nodes.get_mut(&m).unwrap().out_edges.remove(&n);
});
true
}
@@ -96,25 +111,25 @@ where
if lb < ub {
// This edge might introduce a cycle, need to recompute the topological sort
let mut visited = HashSet::new();
let mut delta_f = Vec::new();
let mut delta_b = Vec::new();
let mut visited = IntoIter::new([x, y]).collect();
let mut delta_f = vec![y];
let mut delta_b = vec![x];
if !self.dfs_f(y, ub, &mut visited, &mut delta_f) {
if !self.dfs_f(&self.nodes[&y], ub, &mut visited, &mut delta_f) {
// This edge introduces a cycle, so we want to reject it and remove it from the
// graph again to keep the "does not contain cycles" invariant.
// We use map instead of unwrap to avoid an `unwrap()` but we know that these
// entries are present as we just added them above.
self.in_edges.get_mut(&y).map(|nodes| nodes.remove(&x));
self.out_edges.get_mut(&x).map(|nodes| nodes.remove(&y));
self.nodes.get_mut(&y).map(|node| node.in_edges.remove(&x));
self.nodes.get_mut(&x).map(|node| node.out_edges.remove(&x));
// No edge was added
return false;
}
// No need to check as we should've found the cycle on the forward pass
self.dfs_b(x, lb, &mut visited, &mut delta_b);
self.dfs_b(&self.nodes[&x], lb, &mut visited, &mut delta_b);
// Original paper keeps it around but this saves us from clearing it
drop(visited);
@@ -126,19 +141,24 @@ where
}
/// Forwards depth-first-search
fn dfs_f(&self, n: V, ub: Order, visited: &mut HashSet<V>, delta_f: &mut Vec<V>) -> bool {
visited.insert(n);
delta_f.push(n);
fn dfs_f(
&self,
n: &Node<V>,
ub: Order,
visited: &mut HashSet<V>,
delta_f: &mut Vec<V>,
) -> bool {
n.out_edges.iter().all(|w| {
let node = &self.nodes[w];
self.out_edges[&n].iter().all(|w| {
let order = self.ord[w];
if order == ub {
if node.ord == ub {
// Found a cycle
false
} else if !visited.contains(w) && order < ub {
} else if !visited.contains(w) && node.ord < ub {
// Need to check recursively
self.dfs_f(*w, ub, visited, delta_f)
visited.insert(*w);
delta_f.push(*w);
self.dfs_f(node, ub, visited, delta_f)
} else {
// Already seen this one or not interesting
true
@@ -147,13 +167,14 @@ where
}
/// Backwards depth-first-search
fn dfs_b(&self, n: V, lb: Order, visited: &mut HashSet<V>, delta_b: &mut Vec<V>) {
visited.insert(n);
delta_b.push(n);
fn dfs_b(&self, n: &Node<V>, lb: Order, visited: &mut HashSet<V>, delta_b: &mut Vec<V>) {
for w in &n.in_edges {
let node = &self.nodes[w];
if !visited.contains(w) && lb < node.ord {
visited.insert(*w);
delta_b.push(*w);
for w in &self.in_edges[&n] {
if !visited.contains(w) && lb < self.ord[w] {
self.dfs_b(*w, lb, visited, delta_b);
self.dfs_b(node, lb, visited, delta_b);
}
}
}
@@ -165,13 +186,8 @@ where
let mut l = Vec::with_capacity(delta_f.len() + delta_b.len());
let mut orders = Vec::with_capacity(delta_f.len() + delta_b.len());
for w in delta_b {
orders.push(self.ord[&w]);
l.push(w);
}
for v in delta_f {
orders.push(self.ord[&v]);
for v in delta_b.into_iter().chain(delta_f) {
orders.push(self.nodes[&v].ord);
l.push(v);
}
@@ -180,13 +196,13 @@ where
orders.sort_unstable();
for (node, order) in l.into_iter().zip(orders) {
self.ord.insert(node, order);
self.nodes.get_mut(&node).unwrap().ord = order;
}
}
fn sort(&self, ids: &mut [V]) {
// Can use unstable sort because mutex ids should not be equal
ids.sort_unstable_by_key(|v| self.ord[v]);
ids.sort_unstable_by_key(|v| self.nodes[&v].ord);
}
}